Summer school on Free Probability, Random Matrices, and Applications from June 6th to June 10th 2022 at the University of Wyoming

Zhuang Niu and Ping Zhong are organizing a summer school on Free Probability, Random Matrices, and Applications from June 6th to June 10th 2022 at the University of Wyoming. This event is planned to be held in person, but all lectures will have hybrid components for remote participation. 

The summer school will bring together leading experts, young researchers, and students working in free probability, operator algebras, random matrices, and related fields with the aim of fostering new communications and collaborations. Four mini-courses will be given by leading researchers in the field. In addition, there will be some survey talks or research talks. The mini-courses are designed for graduate students and young researchers. However, everyone is very welcome to participate in the meeting.  

Mini-courses: 

  • Hari Bercovici (Indiana), Complex analysis in free probability. 
  • Benoit Collins (Kyoto), Around the operator norm convergence of random matrices in free probability.  
  • Ken Dykema (College Station), On spectral distributions and decompositions of operators in finite von Neumann algebras 
  • Alexandru Nica (Waterloo), Recent developments related to the use of cumulants in free probability 

The conference website and registration form can be found at https://sites.google.com/view/rmmc2022. Please indicate in the registration form if you would like to contribute a research talk.  

Financial supports are available, and priority will be given to graduate students, junior researchers, and other participants without travel grants. The deadline of registration for full consideration of a financial aid is April 30th, 2022.  

Please share this information with anyone who might be interested in this meeting. 

Queen’s Seminar on Free Probability and Random Matrices

One of the weekly highlights during my times at Queens was the joint seminar with Jamie Mingo on free probability and random matrices. This seminar was of course going on after I left Queen’s, and I also installed different versions of that seminar in Saarbrucken, but at least for me it did not feel the same anymore. So I am happy that we decided now to join forces again and revive our joint seminar in online form. For now it is running on Thursdays at 10 am Eastern time, which is 4 pm German time. You can find the program on the seminar page. If you are interested, write to Jamie to be put on the mailing list.

Proof of Harer-Zagier now online

This blog started actually a couple of years ago as a (not very successful) discussion forum for the recordings of my lectures on Free Probability, Non-Commutative Distributions, Random Matrices, Mathematical Aspects of Quantum Mechanics. During the last year I have still been producing quite a few videos, but those are on mathematics for engineers (and also in German), so not of much interest in this context here. But the Christmas break gave me some motivation and energy to do something more elaborate. So I came back to the random matrix class, where one lecture was, by some technical reasons, not recorded during the original class two years ago. I did a retake of this missing class, and so finally the playlist for the lecture series on random matrices is now also complete. The topic of this new recording is the proof of the theorem of Harer-Zagier. It gives more or less the original proof from the paper by Harer and Zagier, which I find still fun and amazing – consisting of a mixture of analysis, combinatorics, and generatingfunctionology, which I am most fond of. If you want to have a look see here, here, here, and here. For videos without audience (as is now common during corona times) I have become used to splitting the whole lecture into smaller units — which also has the advantage that I can clean the black board in between.

Maybe I will also find time and energy in a (probably far far away) future to do a reshooting of the whole free probability course. This is of course closest to my heart, but as this was my first attempt on recording lectures I needed some time to become aware of the importance of the audio quality – which is so bad in those videos that they did not make it to youtoube …

Talk by Moritz Weber in the Wales MPPM Zoom Seminar

The next Wales MPPM Zoom Seminar will given by Moritz Weber (Saarland) on Tuesday, 23rd November at 4.30 pm UK time and UTC.

The title and abstract are:

Easy quantum groups and quantum permutations
Within Woronowicz’s framework of compact quantum groups, there are natural quantum analogs of the symmetric group, the orthogonal group and the unitary group, amongst others. They have in common that their representation theory may be expressed in terms of diagrams. This has been systematically formalized by Banica and Speicher in 2009 within the class of so called “easy” quantum groups.We give an introduction to “easy” quantum groups, their diagrammatic representation theory and we mention some links with Deligne’s interpolation categories. Moreover, we highlight the role of quantum permutations within the theory of quantum automorphism groups of graphs. This also links with nonlocal games in quantum information theory, as we will point out.

Further details, including the programme of upcoming talks, are available on the Wales MPPM Zoom Seminar web page (https://davidemrysevans.wordpress.com/wales-mppm-zoom-seminar/), and some previous talks appear on the Wales MPPM YouTube channel.

Mini-Workshop on Topological Recursion and Combinatorics

There will be an ACPMS mini-workshop on Friday, November 5, 15:00-19:30 (Oslo time) organised by Octavio Arizmendi Echegaray (CIMAT, Guanajuato, Mexico) and Kurusch Ebrahimi-Fard (NTNU Trondheim, Norway). This will be on topolocial recursion and combinatorics, with special emphasis also on the relation with various generalizations of free probability theory.

Title: Topological Recursion and Combinatorics

Topological recursion is a method of finding formulas for an infinite sequence of series or n-forms by means of describing them in a recursive way in terms of genus and boundary points of certain topological surfaces. While topological recursion was originally discovered in Random Matrix Theory, and could be traced back to the Harer-Zagier formula, it was until Chekhov, Eynard and Orantina (2007) that is was systematically studied. Since then it has found applications in different areas in mathematics and physics such as enumerative geometry, volumes of moduli spaces, Gromov-Witten invariants, integrable systems, geometric quantization, mirror symmetry, matrix models, knot theory and string theory. This 1/2-day series of seminar talks aims at exploring combinatorial aspects relevant to the theory of topological recursion in Random Matrix Models and to widen the bridge to free probability and its generalizations such as higher order freeness or infinitesimal freeness more transparent.

Date, time and place

  • November 5
  • 3:00pm – 7:30pm (Oslo time), 
  • Zoom (for the link write to the organisers)

Speakers: 

  • Elba Garcia-Failde (Discussant: Reinier Kramer)
  • Séverin Charbonnier (Discussant: Octavio Arizmendi)
  • James Mingo (Discussant: Daniel Perales)
  • Jonathan Novak (Discussant: Danilo Lewański)

Titles, abstracts and schedule: 

https://folk.ntnu.no/kurusche/TRFP

How Large Must the Kernel of Polynomials in Matrices Be?

Update: If you want to hear more about this, there will actually be an online talk by Guillaume and Octavio on our paper, on Monday, September 13, in the UC Berkeley Probabilistic Operator Algebra Seminar.

Assume I have two symmetric matrices X and Y and I tell you the eigenvalues, counted with multiplicity, of each of them. Then I apply a polynomial P (which is also known to you) to those matrices and ask you to guess the size of the kernel of P(X,Y). If your guess is smaller than the actual size, the Queen of Hearts will pay out your guess in gold; otherwise, if your guess is too large, off with your head. Is there any strategy to survive this for sure and to get out as rich as possible? Let’s say, I don’t even tell you the size of the matrices and only give you the relative number of the eigenvalues, like: the first matrix X has 2/3 of its eigenvalues at 0, 1/6 at 1, and 1/6 at 2; the second matrix Y has 3/4 of its eigenvalues at -1, 1/8 at 0 and 1/8 at +1. What is your guess for the size of the kernel of the anti-commutator P(X,Y)=XY+YX? To be on the safe side you can of course always choose zero; this let’s you survive in any case, but it won’t make you rich. Is there a better guess, which still guarantees you keep your head?

My guess is 5/12. If you want to know how I get this and, in particular, how I can be so sure that this is the best safe bet – have a look on my new paper, joint with Octavio Arizmendi, Guillaume Cebron, Sheng Yin, “Universality of free random variables: atoms for non-commutative rational functions“, which we just uploaded to the arXiv.

If you want to think about the problem before having a look at the paper, take X as before, but Y having now 1/2 of its eigenvalues at -1, 3/8 at 0 and 1/8 at +1. Which of the following is your guess for the size of the kernel of the anti-commutator in this case:

  • 5/12 
  • 1/6
  • 1/2
  • 1/3

PhD position for a project on “Free Probability Aspects of Neural Networks” at Saarland University

Update: the position has been filled!

I have funding from the German Science Foundation DFG for a PhD position on the interrelations between free probability, random matrices, and neural networks. Below are more details. See also here for the announcement as a pdf.

Project: Neural networks are, roughly speaking, functions of many parameters in a high-dimensional space and the training of such a network consists in finding the parameters such that the function does what it is supposed to do on the “training inputs”, but also generalizing this in a meaningful way to “real test inputs”. Random matrix and free probability theory are mathematical theories which deal with typical behaviours of functions (which have an underlying matrix structure) in high dimensions and in the limit of large matrix size. Thus it is not surprising that those theories should have something to offer for describing and dealing with neural networks. Accordingly, there have been approaches relying on random matrix and/or free probability theory to investigate questions around deep learning. This interaction between free probability and neural networks is hoped to be bi-directional in the long run. However, the project will not address practical purposes of deep learning; instead we want to take the deep learning challenges as new questions around random matrices and free probability and we aim to develop those theories further on a mathematical level.

Prerequisites: Applicants should have an equivalent of a Master’s degree and a background in at least one of the subjects

  • free probability
  • random matrices
  • neural networks

and an interest in learning the remaining ones and, in particular, in working on their interrelations.

Application: Inquiries and applications should be addressed to Roland Speicher. Your application, in German or in English, should arrive before June 20, 2021. It should contain your curriculum vitae and an abstract of your Master’s thesis. Arrange also for at least one recommendation letter to be sent directly to Roland Speicher, preferably by email. State in your application the name of those you asked for such a letter .

Contact:
Prof. Dr. Roland Speicher
Saarland University
Department of Mathematics
Postfach 15 11 50
66041 Saarbrücken
Germany
speicher@math.uni-sb.de
https://www.uni-saarland.de/lehrstuhl/speicher/

Announcement of two talks on free probability at the Technion … and of some more talks

update (from Jan 27): the recordings of the talks of Tobias and mine have been uploaded to youtube, here are the direct links:

I will give a colloquium talk at the Math Department of the Technion, Israel on next Monday, January 25 – online, of course. They have the nice option of a pre-colloquium talk, which provides students with some background for the material appearing in the colloquium talk. Tobias agreed to give such a preparation for my talk. So he will give tomorrow (on Thursday, January 21) an introduction to free probability and its relation with random matrices. Surely a great opportunity for everyone to learn (more) about the subject.

My talk will, of course, have such material in the background, but I tried to prepare it in such a way that even without knowing about free probability one should be able to get the main ideas. So, it might help to know what free semi-circulars are, but it is not necessary (and not assumed) for my talk.

Below are the titles and abstracts of our talks; and here is a link to the Technion page with access information:

https://web.math.technion.ac.il/site/calendar/1267-3-2/

update: actually, next week seems to be a busy week for talks around free probability; don’t forget that the UC Berkeley Probabilistic Operator Algebra Seminar will be starting again, on Monday, January 25, with a talk of Friedrich Goetze; and then there will also be a talk by Serban Belinschi on “The Christoffel-Darboux kernel in noncommutative probability” at the Probability Seminar at  Warsaw University of Technology, on Tuesday, January 26.

Tobias Mai: What actually is free probability theory? (Thursday, January 21, 2021)

In my talk, I want to answer this question by giving an introduction to the underlying ideas, basic concepts, and fundamental results of free probability theory. In particular, I will highlight the deep connections of this field with random matrix theory.

Roland Speicher: Singularity of matrices in non-commuting variables and free probability (Monday, January 25, 2021)

The Edmonds’ problem asks to decide about the singularity of a given matrix with linear polynomials in commuting variables as entries, or more general to compute the rank of such a matrix over the field of rational functions. This problem has no known deterministic polynomial time algorithm and it relates to fundamental questions in complexity theory.

Recently, there has been much interest in analyzing a non-commutative variant of the Edmonds’ problem, where the entries are linear polynomials in non-commuting variables and the rank is over the field of non-commutative rational functions (aka free skew field). Garg, Gurvits, Oliveira, and Wigderson showed that for this non-commutative Edmonds’ problem there exists a deterministic polynomial time algorithm. This problem has a remarkable number of diverse origins and motivations and I will present in my talk another such manifestation of the problem, arising from the relation with free probability and random matrix theory. In particular, this approach results also in another, quite analytic, algorithm for calculating the non-commutative rank.

This talk is based on joint work with Johannes Hoffmann, Tobias Mai, and Sheng Yin.

Nothing New on Connes’ Embedding

It’s now almost a year that we have been told that Connes’ embedding conjecture is not a conjecture anymore, but that it’s actually false. In principle, this is great news as it should open totally new playgrounds, with von Neumann algebras never seen before. The only problem is that we still have not seen them. I am sure that many are looking for them but as far as I am aware nobody outside the quantum information community was able to shed more light on the refutation of Connes’ embedding.

As a believer in the power of non-commutative distributions I tried all my arsenal of moments, cumulants, or Cauchy transforms to get a grasp on how such a non-embeddable von Neumann algebra could look like — of course, without any success. But let me say a few more words an some of my thoughts – if only to come up with a bit longer post for the end of the year.

In our non-commutative distribution language, the refutal of Connes’ embedding says that there are operators in a tracial von Neumann algebra whose mixed moments cannot be approximated by moments of matrices with respect to the trace. We have quite a few of distributions in free probability theory, but the main problem in the present context is that all of them usually can be approximated by matrices, and also all available constructions (like taking free products) preserve such approximations (in particular, since we can model free independence via conjugation by unitary random matrices). Very roughly: our constructions of distributions take some input and then produce some distribution — however, if the input is embeddable, then the output will be so, too. Thus I cannot use those constructions directly to make the leap from our known universe to the new ones which should be out there. The only way I see to overcome this obstruction is to look for distributions which create themselves “out of nothing” via such constructions, i.e., for fixed point distributions of those constructions. For such fixed point distributions I see at least no apriori reason to be embeddable.

But is there any way to make this concrete? My naive attempt is to use the transition from moments to cumulants (or, more analyticially, from Cauchy transforms to R-transforms) for this. We know that infinitely divisible distributions (in particular, compound Poisson ones) are given in the form that their free cumulants are essentially the moments of some other distribution. So I am trying to find reasonable fixed points of this mapping, i.e., I am looking for distributions whose cumulants are (up to scaling or shift) the same as their moments. Unfortunately, all concrete such distributions seem to arise via solving the fixed point equation in an iterative way – which is also bad from our embedding point of view, since those iterations also seem to preserve embeddability. So I have to admit complete and utter failure.

Anyhow, if the big dreams are not coming true, one should scale down a bit and see whether anything interesting is left … so let me finally come to something concrete, which might, or might not, have some relevance …

In the case of one variable we are looking on probability measures, and as those can be approximated by discrete measures with uniform weights on the atoms (thus by the distribution of matrices), this situation is not relevant for Connes’ embedding question. However, I wonder whether a fixed point of the moments-to-cumulants mapping in this simple situation has any relevance. The only meaningful mapping in this case seems to be that I take a moment sequence, shift it by 2 and then declare it as a cumulant sequence — necessarily of an infinitely divisible distribution. Working out the fixed point of this mapping gives the following sequence of even moment/cumulants: 1, 1, 3, 14, 84, 596. The Online Encyclopedia of Integer Sequences labels this as A088717 — which gives, though, not much more information than the fixed point equation for the generating power series.

The above moment-cumulant mapping was of course using free cumulants. Doing the same with classical cumulants gives by a not too careful quick calculation the sequence 1, 1, 4, 34, 496, which seems to be https://oeis.org/A002105 — which goes under the name ”reduced tangent numbers”. There are also a couple of links to various papers, which I still have to check …

Okay, I suppose that’s it for now. Any comment on the relevance or meaning of the above numbers, or their probability distributions, would be very welcome – as well, as any news on Connes’ conjecture.

Lecture Notes on Non-Commutative Distributions

Waiting has come to an end … finally the pdf edition of the Lecture Notes on Non-Commutative Distributions has arrived. As a bonus for loyal followers I have added, compared to the actual content of the lecture series, two small sections at the end on what our machinery has to say about Connes embedding problem and the q-Gaussian distribution. Though, don’t expect too much there …