Category Archives: Connes embedding problem

Nothing New on Connes’ Embedding

It’s now almost a year that we have been told that Connes’ embedding conjecture is not a conjecture anymore, but that it’s actually false. In principle, this is great news as it should open totally new playgrounds, with von Neumann algebras never seen before. The only problem is that we still have not seen them. I am sure that many are looking for them but as far as I am aware nobody outside the quantum information community was able to shed more light on the refutation of Connes’ embedding.

As a believer in the power of non-commutative distributions I tried all my arsenal of moments, cumulants, or Cauchy transforms to get a grasp on how such a non-embeddable von Neumann algebra could look like — of course, without any success. But let me say a few more words an some of my thoughts – if only to come up with a bit longer post for the end of the year.

In our non-commutative distribution language, the refutal of Connes’ embedding says that there are operators in a tracial von Neumann algebra whose mixed moments cannot be approximated by moments of matrices with respect to the trace. We have quite a few of distributions in free probability theory, but the main problem in the present context is that all of them usually can be approximated by matrices, and also all available constructions (like taking free products) preserve such approximations (in particular, since we can model free independence via conjugation by unitary random matrices). Very roughly: our constructions of distributions take some input and then produce some distribution — however, if the input is embeddable, then the output will be so, too. Thus I cannot use those constructions directly to make the leap from our known universe to the new ones which should be out there. The only way I see to overcome this obstruction is to look for distributions which create themselves “out of nothing” via such constructions, i.e., for fixed point distributions of those constructions. For such fixed point distributions I see at least no apriori reason to be embeddable.

But is there any way to make this concrete? My naive attempt is to use the transition from moments to cumulants (or, more analyticially, from Cauchy transforms to R-transforms) for this. We know that infinitely divisible distributions (in particular, compound Poisson ones) are given in the form that their free cumulants are essentially the moments of some other distribution. So I am trying to find reasonable fixed points of this mapping, i.e., I am looking for distributions whose cumulants are (up to scaling or shift) the same as their moments. Unfortunately, all concrete such distributions seem to arise via solving the fixed point equation in an iterative way – which is also bad from our embedding point of view, since those iterations also seem to preserve embeddability. So I have to admit complete and utter failure.

Anyhow, if the big dreams are not coming true, one should scale down a bit and see whether anything interesting is left … so let me finally come to something concrete, which might, or might not, have some relevance …

In the case of one variable we are looking on probability measures, and as those can be approximated by discrete measures with uniform weights on the atoms (thus by the distribution of matrices), this situation is not relevant for Connes’ embedding question. However, I wonder whether a fixed point of the moments-to-cumulants mapping in this simple situation has any relevance. The only meaningful mapping in this case seems to be that I take a moment sequence, shift it by 2 and then declare it as a cumulant sequence — necessarily of an infinitely divisible distribution. Working out the fixed point of this mapping gives the following sequence of even moment/cumulants: 1, 1, 3, 14, 84, 596. The Online Encyclopedia of Integer Sequences labels this as A088717 — which gives, though, not much more information than the fixed point equation for the generating power series.

The above moment-cumulant mapping was of course using free cumulants. Doing the same with classical cumulants gives by a not too careful quick calculation the sequence 1, 1, 4, 34, 496, which seems to be https://oeis.org/A002105 — which goes under the name ”reduced tangent numbers”. There are also a couple of links to various papers, which I still have to check …

Okay, I suppose that’s it for now. Any comment on the relevance or meaning of the above numbers, or their probability distributions, would be very welcome – as well, as any news on Connes’ conjecture.

Lecture Notes on Non-Commutative Distributions

Waiting has come to an end … finally the pdf edition of the Lecture Notes on Non-Commutative Distributions has arrived. As a bonus for loyal followers I have added, compared to the actual content of the lecture series, two small sections at the end on what our machinery has to say about Connes embedding problem and the q-Gaussian distribution. Though, don’t expect too much there …

Another online seminar: Wales MPPM Zoom Seminar

At the moment there are many online activities going on …. and here is another one: the Wales Mathematical Physics Zoom Seminar, organized by Edwin BeggsDavid EvansGwion Evans,Rolf GohmTim Porter.

Why do I mention in particular this one; there are at least two reasons. Today there is a talk by Mikael Rordam around the Connes embedding problem, and next week I will give a talk, on my joint work with Tobias Mai and Sheng Yin of the last years around rational functions of random matrices and operators.

If you are interested in any of this, here is the website of the seminar, where you can find more information.

Update: The talks are usually recorded and posted on a youtube channel. There you can find my talk on “Random Matrices and Their Limits”.

Is there an impact of a negative solution to Connes’ embedding problem on free probability?

There is an exciting new development on Connes’ embedding problem. The recent preprint MIP*=RE by Ji, Natarajan, Vidick, Wright, Yuen claims to have solved the problem to the negative via a negative answer to Tsirelson’s problem via the relation to decision problems on the class MIP* of languages that can be decided by a classical verifier interacting with multiple all powerful quantum provers. I have to say that I don’t really understand what all this is about – but in any case there is quite some excitement about this and there seems to be a good chance that Connes’ problem might have a negative solution. To get some idea about the excitement around this, you might have look on the blogs of Scott Aaronson or of Gil Kalai. At the operator front I have not yet seen much discussion, but it might be that we still have to get over our bafflement.

Anyhow, there is now a realistic chance that there are type II factors which are not embeddable and this raises the question (among many others) what this means for free probability. I was asked this by a couple of people and as I did not have a really satisfying answer I want to think a bit more seriously about this. At the moment my answer is just: Okay, we have our two different approaches to free entropy and a negative solution to Connes embedding problem means that they cannot always agree. This is because we always have for the non-microstates free entropy \chi^* that \chi^*(x_1+\sqrt\epsilon s_n,\dots,x_n+\sqrt\epsilon s_n)>-\infty, if s_1,\dots,s_n are free semicircular variables which are free from x_1,\dots,x_n. The same property for the microstates free entropy \chi, however, would imply that x_1,\dots,x_n have microstates, i.e., the von Neumann algebra generated by x_1,\dots,x_n is embeddable; see these notes of Shlyakhtenko.

But does this mean more then just saying that there are some von Neumann algebras for which we don’t have microstates but for which the non-microstates approach give some more interesting information, or is there more to it? I don’t know, but hopefully I will come back with more thoughts on this soon.

Of course, everybody is invited to share more information or thoughts on this!