Topological Recursion Meets Free Probability

Before I am getting too lazy and just re-post here information about summer schools or postdoc positions, I should of course also come back to the core of our business, namely to make progress on our main questions and to get excited about it. So there are actually two recent developments about which I am quite excited. Here is the first one, the second will come in the next post.

During the last few years there was an increasing belief that free probability (at least its higher order versions) and the theory of topological recursion should be related, maybe even just different sides of the same coin. So our communities started to have closer contacts, I started a project on this in our transregional collaborative research centre (SFB-TRR) 195, we had summer schools (here in Tübingen in 2018) and workshops (here in Münster in 2021) on possible interactions and finally there was the breakthrough paper Analytic theory of higher order free cumulants by Gaëtan Borot, Séverin Charbonnier, Elba Garcia-Failde, Felix Leid, Sergey Shadrin. This paper achieves, among other things, the solution to two of our big problems or dreams, namely:

  • Rewrite the combinatorial moment-cumulant relations into functional relations between the generating powers series; for first order this was done in Voiculescu’s famous formula relating the Cauchy and the R-transform going back to the beginnings of free probability in the 80s; for second order this was one of the main results in my paper with Benoit, Jamie and Piotr from 2007. For higher orders, however, this was wide open – and its amazing solution can now be found in the mentioned paper.
  • Is our theory of free probability only the planar (genus 0) sector of a more general theory which takes all genera into account? This is actually the idea of topological recursion, that you should consider all orders and genera and look for relations among them. I have to admit that I was always quite skeptic about defining the notion of freeness for non-planar situations – but it seems that the paper at hand provides a consistent theory for doing so; apparently also putting the notion of infinitesimial freeness into this setting.

Instead of having me mumbling more about all this, you might go right away to the paper and read its Introduction to get some more precise ideas about what this is all about and what actually is proved.

Let me also add that there is another interesting preprint, On the xy Symmetry of Correlators in Topological Recursion via Loop Insertion Operator by Alexander Hock, which also addresses the functional relations between moments and free cumulants in the g=0 case.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s