Tag Archives: eigenstate thermalization hypothesis

Free probability, between math and physics (and also machine learning) – some updates

In the recent post of a similar title I mentioned some papers which related physics problems (eigenstate thermalization hypothesis or Open Quantum SSEP) with free probability. Let me point out that the title of the preprint by Hruza and Bernard has been changed to “Coherent Fluctuations in Noisy Mesoscopic Systems, the Open Quantum SSEP and Free Probability” and that there are some new and follow up preprints in this directions, namely “Spectrum of subblocks of structured random matrices: A free probability approach“, by Bernard and Hruza, and also “Designs via free probability“, by Fava, Kurchan, Pappalardi. In all of them free cumulants and their relations to random matrices play an important role. Not too surprisingly, I find this very interesting in general, but also in particular, as during my voyage in the machine learning world I became a bit obsessed with the fact that free cumulants are given by the leading order of classical cumulants of the entries of unitarily invariant matrix ensembles (with a “cyclic” or “loop” structure of the indices). This seems to be highly relevant – though, at the moment I am not actually sure for what exactly.

Anyhow, if anybody is interested in this, in the last lecture of my machine learning course I give a very high level survey on these relations, and in the video on Gaussian equivalence principle in the same course I talk about a more concrete model of this in the random features model context.

Free probability, between maths and physics

The fun of free probability is that if you think you have seen everything in the subject suddenly new exciting connections are popping up. This happened for example a few months ago with the preprints

Eigenstate Thermalization Hypothesis and Free Probability, by Silvia Pappalardi, Laura Foini, and Jorge Kurchan

and

Dynamics of Fluctuations in the Open Quantum SSEP and Free Probability, by Ludwig Hruza and Denis Bernard

According to the authors, the occurrence of free probability in both problems has a similar origin: the coarse-graining at microscopic either spatial or energy scales, and the unitary invariance at these microscopic scales. Thus the use of free probability tools promises to be ubiquitous in chaotic or noisy many-body quantum systems.

I still have to have a closer look on these connections and thus I am very excited that there will be great opportunity for learning more about this (and other connections) and discussing it with the authors at a special day at IHP, Paris on 25 January 2023. This is part of a two-day conference “Inhomogeneous Random Structures”.

Wednesday 25 January: Free probability, between maths and physics.
Moderator: Jorge Kurchan (Paris)

Free probability is a flourishing field in probability theory. It deals with non-commutative random variables where one introduces the concept of «freeness» in analogy to «independence» of commuting random variables. On the mathematical side, it has given new tools and a deeper insight into, amongst others, the field of random matrices. On the physics side, it has recently appeared naturally in the context of quantum chaos, where all its implications have not yet been fully worked out.

Speakers: Denis Bernard (Paris), Jean-Philippe Bouchaud (Paris), Laura Foini (Saclay), Alice Guionnet (Lyon), Frederic Patras (Nice), Marc Potters (Paris), Roland Speicher (Saarbrücken)