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Introduction and Survey
The goal of this lecture series is to cover mathematical interesting aspects of neural net-
works, in particular, those related to random matrices. As the lecturer knows more about
random matrices than about neural networks, the whole presentation is surely biased
towards the former ones.

Neural networks
A neural network (more precisely, a fully connected feed-forward neural network) is a
function f : Rp → R of the following form (∗)

It is determined by

• a, in general non-linear, function σ : R → R, which is usually fixed; this map σ is
component-wise applied to vectors or matrices - in the above, we denoted it then
by σ̃, but later we will just omit this distinction; a prominent example for such a σ
is σ = ReLu, which is just

ReLu(t) = max(0, t)

• all matrices W1, . . . ,WL+1; those are the network parameters and they have to be
chosen in the right way via training

The problem in this context is: our data set is high-dimensional – i.e., p is large – and
we would like to characterize or distinguish data sets corresponding to different classes of
objects. For example, x ∈ Rp can be a vector of a high-resolution picture and we have
picture of cats and pictures of dogs,

Rp ⊃ C ∪D = {pictures of cats} ∪ {pictures of dogs},

and we would like to distinguish them. So we would like to have a function

f : Rp → R, such that f(x) =

{
1, x ∈ C

0, x ∈ D

But the problem is that we have no idea how to define f directly, we can only hope to
define it by what it is supposed to do, via an ansatz of the form (∗) and then find the
parameters via training. That this really seems to work quite well, is a big mystery!



Consider our mappings

Rp σ◦W1→ Rm → . . .
σ◦WL→ Rm WL+1→ R

The vector in the last hidden layer Rm is usually called the vector of features ; and we can
consider the mapping up to this point as an embedding of Rp into Rm, which is often given
by a kernel. In the last few years, the limit for m→ ∞ of this kernel, the so-called neural
tangent kernel, has become quite prominent as a first (kind of linear) approximation for
this embedding. If this kernel is fixed, and only WL+1 is learned, then this is a linear
optimization problem, which is understood quite well. However, feature learning seems to
be crucial for the success of neural networks. At the moment the mathematical description
of this is still quite unclear.

Random vectors and random matrices
Our preferred way to model our high-dimensional data is by probability distributions
on Rp. The main distribution where we can really calculate something are Gaussian
distributions

x = (x(1), . . . , x(p))T ∈ Rp

which depend on some mean vector

µ = (E[x(1)], . . . , E[x(p)])T ∈ Rp

and some covariance matrix

Σ =
(
E[x(i)x(j)]− E[x(i)]E[x(j)]

)p
i,j=1

∈ Rp×p.

Note that assuming a Gaussian distribution for real data is quite unrealistic. However: we
can, for many statement, also compose Gaussian distributions with Lipschitz functions,
which yields then the much more general class of concentrated random vectors. Those
seem to be, in many respects, good models for real data; in particular, GANs (generative
adversarial networks) are given in this way.

Our knowledge about the data is given by measurements or observations. Assume we
have n observations of our p-dimensional data: x1, . . . , xn ∈ Rp. Then, assuming that the
mean is zero, the canonical estimator for our “true” covariance Σ is given by the sample
covariance matrix

Σ̂ :=
1

n

n∑
k=1

(
x
(i)
k x

(j)
k

)p
i,j=1︸ ︷︷ ︸

xkx
T
k

=
1

n
XXT ,

where X = [x1 . . . xn] ∈ Rp×n is the data set matrix.
In classical statistics, we fix p and let n→ ∞ and then we have that Σ̂ converges to Σ.

But now, in our modern setting, the size p of the data and the number n of observations
are of the same order, p ∼ n. This is a different regime than the classical one - more
complicated, but still controllable.

In our neural network (∗) we can make precise asymptotic statements for the limit
where the dimensions go to ∞, but we have to consider the regime that all sizes are of the
same order, i.e., p ∼ n ∼ m → ∞. The depth L is usually fixed in those investigations.
Thus we will mainly talk about wide networks. The role of the depth L is not so clear, in
particular, at least in this lecture notes we will not consider the deep limit L→ ∞.



A crucial ingredient for all our investigations and statements will be concentration
phenomena in high dimensions. This is one side (the good one) of the two sides of
working in high dimensions:

• We have the “curse of high dimensionality”:
high dimensional spaces are quite large and empty; sample sets in high dimensions
are very thin; and usually one has bad convergence of estimators; in particular, it
is impossible to sample the density of the distribution.

• But there is also a “blessing of high dimensionality”, aka concentration phenomena
in high dimensions :
many random vectors and random matrices show in high dimensions a (close to) de-
terministic behaviour; and it is surprisingly simple to sample smooth 1-dimensional
functions of the high-dimensional vectors.

Let us consider a few numerical instances of such concentration behaviours.

Concentration of the norm of random vectors
The following histograms show that Gaussian random vectors concentrate on the surface
of the unit ball. Note that we have normalized the Gaussian random vectors such that in
all dimensions the expectation of the square of their length is equal to 1.

• distribution of a one-dimensional Gaussian vector x ∈ R1 and of its length ∥x∥ ∈ R,
with 100.000 samples

• distribution of a two-dimensional Gaussian vector x ∈ R2 and of its length ∥x∥ ∈ R,
with 100.000 samples
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• the length ∥x∥ ∈ R of a Gaussian vector x ∈ Rp, for p = 1, 2, 5, 20, 80, 320; with
10.000 samples in each case

Two Gaussian random vectors are nearly orthogonal in high
dimensions
For 10.000 samples of pairs (x1, x2) of independent Gaussian vectors x1, x2 ∈ Rp, the
histogram of the normalized inner product ⟨x1,x2⟩

∥x1∥·∥x2∥ is shown for p = 1, 2, 5, 20, 80, 320.
This shows that two such vectors are close to orthogonal in high dimensions. Note that 0
is, also in small dimensions, the expectation of the normalized inner product.



Estimation of covariance matrix via sampling
Consider Gaussian random vectors in Rp with independent components, and such that
half of the components have variance 1, and the other half have variance 2. This means
that the covariance matrix Σ has p/2 eigenvalues 1 und p/2 eigenvalues 2 and thus the
eigenvalues of Σ look like this

We observe now n samples x1, . . . , xn ∈ Rp and plot the p eigenvalues of the sample
covariance matrix

Σ̂ :=
1

n

n∑
k=1

xkx
T
k .

First, we consider the classical regime: we fix p = 100 and increase n as n = 100,
n = 1.000, n = 10.000, n = 100.000



This shows the convergence of Σ̂ to Σ in the classical regime.
Next, we look at the modern regime, where n should scale proportional to p. We plot

the eigenvalues of Σ̂ for p = n = 100, p = n = 500, and p = n = 2000

Assume now we are given a concrete situation p = n = 100, where we cannot change
p or n, but just have to work with this specific instance. What can we get out of this
specific histogram. According to the above we have two different asymptotics as possible
approximations for our concrete situation p = n = 100? Which is more appropriate? Is

• like p = 100, n→ ∞



• or like p = n, n→ ∞

The first regime is clearly not appropriate! We need very large n to identify Σ; n = 100
is far from this limit; so the classical approach is useless here.

In the second regime, we already have for n = 100 a good approximation of the limit
distribution; however, this is not given by Σ, but by a deterministic function of this. We
will have to investigate the relation between Σ and Σ̂ in this limit.

Signal-plus-noise models – can we observe the signal in the
noise?
Consider Gaussian random vectors in R1000

• with independent components,

• one component has “large” variance µ

• 499 of them have variance 1

• 500 of them have variance 2

If we put µ = 1 then we are back to the situation before, with p = n = 1.000; we
overlay in the following plot the histograms of the eigenvalues of Σ and of Σ̂.

If we now choose µ = 7, then Σ will have one eigenvalue at 7. We think of this eigenvalue as
corresponding to some relevant information (“signal”) in Σ, whereas the other eigenvalues
are representing noise. Will we see a shadow of this signal eigenvalue in the spectrum
of Σ̂? Indeed, there is a clear eigenvalue λ corresponding to this - but this is not at
7, but somewhere around 9. Note that we have enlarged the contribution of the signal



eigenvalue µ and its shadow λ in the histogram, to make them visible. There is always
only one eigenvalue sitting at those positions.

If we decrease µ to 5, then we still see a corresponding eigenvalue λ in Σ̂, sitting a bit
above 7.

But when µ decreases to 3, its shadow in Σ̂ will be swallowed by the bulk eigenvalues
and is not visible any more



We will investigate the relation between the position µ of the signal eigenvalue in Σ
and the position of the corresponding outlier λ in the eigenvalues of Σ̂. In particular, we
will see that one has tools for giving explicit formulas for the relation between them.

What else: double descent, non-linear random matrices, neural
tangent kernel
In the following lectures we will make the above observations more precise. Understand-
ing the by now quite well-established theories of Gaussian random vectors and random
matrices in high dimensions is a main focus, but will also be complemented by more re-
cent topics like “double descent”, “non-linear random matrix models” or “neural tangent
kernel”. For the former topics we have benefited quite a bit from “standard” literature
[CL22, RYH22, Ver18, Wai19] as well as from discussions with and lecture notes from
Boris Hanin.



1. Volumes of Hyperballs and Hypercubes in High
Dimensions

We want to understand functions on sets A ⊂ Rp, for p large, in terms of their typical
and averaged behavior. We describe the data sets by probability distributions in Rp; the
most basic ones are uniform distributions on sets A, given by the volume, or (later) by
Gaussian distributions. For A ⊂ Rp we consider its volume (Lebesgue measure)

vol(A) =

∫
A

dx =

∫
Rp

1A(x) dx =

∫
. . .

∫
(t1,...,tp)∈A

dt1 . . . dtp.

We consider in particular

Bp(R) := {x = (t1, . . . , tp) ∈ Rp : t21 + · · ·+ t2p︸ ︷︷ ︸
=:∥x∥2

≤ R2},

the p-dimensional (hyper)ball of radius R, and

Cp(R) := [−R,R]× . . .× [−R,R]︸ ︷︷ ︸
p times

= {x = (t1, . . . , tp) ∈ Rp : |ti| ≤ R ∀i = 1, . . . , p} ,

the p-dimensional hypercube with side length 2R.

1.1. Formula for volumes of the balls in any dimension
We clearly have for all p

vol(Cp(R)) = (2R)p, so in particular vol (Cp (1/2)) = 1.



How about the volumes of hyperballs? We have

vol(Bp(R)) =

∫
. . .

∫
t21+...+t

2
p≤R

dt1 . . . dtp

=

∫
. . .

∫
(Rs1)2+...+(Rsp)2≤R

d(Rs1) . . . d(Rsp)

= Rp

∫
. . .

∫
s21+...+s

2
p≤1

ds1 . . . dsp

= Rp vol(Bp(1)).

Put Bp := Bp(1), then

vol(B1) =

∫ 1

−1

dt1 = 2

and

vol(B2) =

∫∫
t21+t

2
2≤1

dt1 dt2 =

∫ +1

−1

∫ +
√

1−t21

−
√

1−t21
dt2 dt1 = 2

∫ +1

−1

√
1− t2 dt = . . . = π

by substitution. This works better in polar coordinates t1 = r cos(φ) and t2 = r sin(φ):∫∫
t21+t

2
2≤1

dt1 dt2 =

∫ 2π

0

∫ 1

0

r dr dφ = 2π

[
1

2
r2
]1
0

= 2π
1

2
= π.

For general p, we can derive a recursion by integrating out two variables in polar coordi-
nates:

vol(Bp) =

∫
. . .

∫
t21+...+t

2
p≤1

dt1 . . . dtp

=

∫
. . .

∫
t21+...+t

2
p−2+r

2 sin2(φ)+r2 cos2(φ)≤1

dt1 . . . dtp−2r dr dφ

=

∫ 2π

0

∫ 1

0

 ∫
. . .

∫
t21+...+t

2
p−2≤1−r2

dt1 . . . dtp−2

 r dr dφ

=

∫ 2π

0

∫ 1

0

vol(Bp−2(
√
1− r2))r dr dφ

=

∫ 2π

0

∫ 1

0

vol(Bp−2)(1− r2)
p−2
2 r dr dφ

= vol(Bp−2) · 2π ·
∫ 1

0

r(1− r2)
p−2
2 dr

= vol(Bp−2) · 2π ·
[
(1− r2)

p
2

(
−1

2
· 2
p

)]1
0︸ ︷︷ ︸

= 1
p

=
2π

p
vol(Bp−2).



This yields then for example the well-known volume of the three-dimensional ball

vol(B3) =
2π

3
vol(B1)︸ ︷︷ ︸

=2

=
4π

3
.

Iterating the recursion for even p = 2k gives

vol(B2k) =
2π

2k
· vol(B2(k−1)) =

2π

2k
· 2π

2(k − 1)
· vol(B2(k−2)) = . . . =

πk

k!
· vol(B0),

where π = vol(B2) =
2π
2
vol(B0) yields vol(B0) = 1. Thus for p = 2k

vol(B2k) =
πk

k!
=

π
p
2(
p
2

)
!

For odd p = 2k + 1, on the other hand, we can iterate down to one dimension:

vol(B2k+1) =
2π

2k + 1
· 2π

2k − 1
· . . . · 2π

3
· vol(B1)︸ ︷︷ ︸

=2

=
πk(

k + 1
2

)
·
(
k − 1

2

)
· . . . · 3

2
· 1
2

=
π

p
2

p
2
·
(
p
2
− 1
)
· . . . · 3

2
· 1
2
· π 1

2

.

We can combine the two cases in a common formula for general p

vol(Bp) =
π

p
2

Γ
(
p
2
+ 1
) ,

where Γ is Euler’s gamma function, i.e.

Γ(k) = (k − 1)! and Γ

(
k +

1

2

)
=

(
k − 1

2

)
·
(
k − 3

2

)
· . . . · 3

2
· 1
2
·
√
π

and in general (for s ∈ (0,∞))

Γ(s) =

∫ ∞

0

ts−1 exp(−t) dt.

Stirling’s approximation for the factorial

Γ(s+ 1) ∼
√
2πs

(s
e

)s
for large s

gives for large p the approximation

vol(Bp) =
π

p
2

Γ
(
p
2
+ 1
) ∼ π

p
2√

2π p
2

(
p
2e

) p
2

∼ 1
√
pπ

·
(
2πe

p

) p
2

.



Theorem 1.1. The volume of the hyperball is given by

vol(Bp(R)) =
π

p
2

Γ
(
p
2
+ 1
) ·Rp,

which behaves asymptotically as

vol(Bp(R)) ∼
1

√
pπ

·
(
2πeR2

p

) p
2

for p→ ∞.

Corollary 1.2. (1) For any fixed radius R > 0, the volume of Bp(R) goes to zero for
high dimensions:

lim
p→∞

vol(Bp(R)) = 0.

(2) In order for Bp(R) to have volume 1, the radius has to scale with the dimension as
R ∼

√
p

2πe
.

p vol(Bp)

1 2

2 π ≈ 3.14

3 4π
3

≈ 4.19

4 π2

2
≈ 4.93

5 8π2

15
≈ 5.24

6 π3

6
≈ 5.17

10 π5

120
≈ 2.55

15 . . . ≈ 0.38
p

vol(Bp)
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Figure 1: Comparison of the volumes of the hyperball in higher dimensions.

From the concrete formula for the volume one gets concentration phenomena for “ran-
dom vectors” in the balls in high dimensions, according to the following slogans.

Slogans 1.3. In high dimensions:

(i) the volume of the ball is concentrated close to its surface;

(ii) almost all of the volume of the ball lies near its equator (note: there are many
equators and this holds for all of them!);

(iii) any two vectors in the ball are almost orthogonal.

In small dimensions these statements are clearly not true.



In the following we will make those slogans mathematically precise and prove them. We
will talk about probabilities P of events; here the probability is measured by the volume
of the sets having a considered property, normalized by the volume of the unit ball.

1.2. The volume of the ball is concentrated close to its surface
Fix ε > 0, then we have for the random vectors x ∈ Bp that

P(∥x∥ > 1− ε) =
vol({x ∈ Bp : ∥x∥ > 1− ε})

vol(Bp)

=
vol(Bp)− vol({x ∈ Bp : ∥x∥ ≤ 1− ε})

vol(Bp)

= 1− vol(Bp(1− ε))

vol(Bp(1))

and thus
P(∥x∥ > 1− ε) = 1− (1− ε)p

p→∞−−−→ 1 if ε is fixed.

If one wants the volume in the “skin” constant, one has to scale ε with p like ε = 1
p
:

P

(
∥x∥ > 1− 1

p

)
= 1−

(
1− 1

p

)p
︸ ︷︷ ︸
≈ 1

e
for p large

≈ 1− 1

e
≈ 62%.

Often, one likes to write the concentration via exponential estimates in the dimension.
For this one has the following estimate.

Lemma 1.4. For p ≥ 1 and 0 < ε ≤ 1 we have

(1− ε)p ≤ exp(−εp).

Proof. This follows from the obvious case p = 1

0 ≤ 1− ε ≤ exp(−ε)

by taking the p-th power.



Then we can write our concentration of the norm estimate as follows.

Theorem 1.5. For p ≥ 1 and 0 < ε ≤ 1 we have

P(x ∈ Bp : ∥x∥ > 1− ε) = 1− (1− ε)p ≥ 1− exp(−εp)

and
P

(
x ∈ Bp : ∥x∥ > 1− 1

p

)
≥ 1− 1

e
.

1.3. Almost all of the volume of the ball lies near its equator
Consider x = (t1, . . . , tp) ∈ Bp and choose (arbitrarily) tp as the north direction.

Then the equator {x ∈ Bp | tp = 0} is a (p− 1)-dimensional region and the probability

of being close to the equator is given by

P(|tp| ≤ ε) =
vol({x ∈ Bp | tp ∈ (−ε, ε)})

vol(Bp)

=
1

vol(Bp)

∫ ε

−ε

∫
. . .

∫
t21+...+t

2
p−1≤1−t2

dt1 . . . dtp−1 dt

=
1

vol(Bp)

∫ +ε

−ε
vol(Bp−1(

√
1− t2)) dt

=
vol(Bp−1)

vol(Bp)

∫ +ε

−ε
(1− t2)

p−1
2 dt

=

π
p−1
2

Γ( p−1
2

+1)

π
p
2

Γ( p
2
+1)

∫ +ε

−ε
(1− t2)

p−1
2 dt

=
1√
π

Γ
(
p
2
+ 1
)

Γ
(
p−1
2

+ 1
) ∫ +ε

−ε
(1− t2)

p−1
2 dt

∼ 1√
π

√
2π p

2

(
p
2e

) p
2√

2π p−1
2

(
p−1
2e

) p−1
2

∫ +ε

−ε
(1− t2)

p−1
2 dt

∼ 1√
π

√
p

p− 1

(
p

p− 1

) p
2
(
p− 1

2e

) 1
2
∫ +ε

−ε
(1− t2)

p−1
2 dt



∼ 1√
π

√
p

2e

1(
1− 1

p

) p
2︸ ︷︷ ︸

∼ 1

exp(− 1
2)

=
√
e

∫ +ε

−ε
(1− t2)

p−1
2 dt

∼ 1√
π

√
p

2

∫ +ε

−ε
(1− t2)

p−1
2 dt

∼ 1√
π

√
p

2

∫ +ε

−ε
(1− t2)

p
2 dt

=
1√
π

∫ +ε
√

p
2

−ε
√

p
2

(
1− 2s2

p

) p
2

︸ ︷︷ ︸
∼exp(−s2)

ds

(
substituting t =

s√
p
2

)

∼ 1√
π

∫ +∞

−∞
exp(−s2) ds = 1

and thus for any ε > 0:

lim
p→∞

P(|tp| ≤ ε) = 1.

By more precise estimates we can also control the speed of concentration as

P(x = (t1, . . . , tp) ∈ Bp : |tp| ≤ ε) ≥ 1− exp

(
−p− 1

2
· ε2
)
·
√
2π.

Scaling again ε with p, say ε =
√

2·2
p−1

, we have

P

(
x = (t1, . . . , tp) ∈ Bp : |tp| ≤

2√
p− 1

)
≥ 1− e−2 ·

√
2π ≈ 66%,

i.e. more than 66% of the volume of the unit ball are within a slice of width 2/
√
p− 1

around the equator. Note that this confirms the idea that because of 1 ≥ ∥x∥2 = t21+· · ·+t2p
each coordinate ti should typically be of size ti ≲ 1/

√
p (since typically ∥x∥2 ≈ 1 because

of the concentration of ∥·∥).



1.4. Any two vectors in the ball are almost orthogonal

Consider two vectors x, y in the unit ball. What is the probability that they are close to

being orthogonal? We have

P

(
x, y ∈ Bp :

|⟨x, y⟩|
∥x∥ · ∥y∥

≤ ε

)
=

vol
({

(x, y) ∈ Bp×Bp :
|⟨x,y⟩|
∥x∥·∥y∥ ≤ ε

})
vol(Bp×Bp)︸ ︷︷ ︸

=vol(Bp)2

=
vol
({
x ∈ Bp :

|⟨x,y⟩|
∥x∥·∥y∥ ≤ ε

})
vol(Bp)

for any fixed y ∈ Bp, by the rotational invariance of the problem. Let’s take y =

(0, . . . , 0, 1) ∈ Bp, then ∥y∥ = 1 and

P

(
x, y ∈ Bp :

|⟨x, y⟩|
∥x∥ · ∥y∥

≤ ε

)
=

vol
({
x ∈ Bp :

|⟨x,y⟩|
∥x∥·∥y∥ ≤ ε

})
vol(Bp)

=
vol
({
x = (t1, . . . , tp) ∈ Bp :

|tp|
∥x∥ ≤ ε

})
vol(Bp)

.

Define η via η
1−η = ε (note that ε ≈ η for small ε), then we know

P(|tp| ≤ η) ≥ 1− exp

(
−p− 1

2
· η2
)
·
√
2π

and

P(∥x∥ > 1− η) ≥ 1− exp (−pη) ,

thus

P(|tp| ≤ η and ∥x∥ > 1− η) ≥ 1− exp

(
−p− 1

2
· η2
)
·
√
2π − exp (−pη) .1

Since |tp| ≤ η and ∥x∥ > 1− η together imply

|tp|
∥x∥

≤ η

1− η
= ε,

we have

P

(
x, y ∈ Bp :

|⟨x, y⟩|
∥x∥ · ∥y∥

≤ η

1− η

)
≥ 1− exp

(
−p− 1

2
· η2
)
·
√
2π − exp (−pη) .

1If P(AC) ≤ α and P(BC) ≤ β, then P((A ∩B)C) = P(AC ∪BC) ≤ P(AC) + P(BC) ≤ α+ β.



2. Gaussian random vectors and linear concentration
of Chebyshev and Bernstein type

2.1. Gaussian random vectors

We now consider random vectors x = (t1, . . . , tp) ∈ Rp given by a probability distribution

ψ(x) = ψ(t1, . . . , tp) on Rp, i.e.

• ψ(x) ≥ 0 for all x ∈ Rp and

• 1 =
∫
Rp ψ(x) dx =

∫
R . . .

∫
R ψ(t1, . . . , tp) dt1 . . . dtp.

Thus, for H ⊂ Rp, P {x ∈ H} =
∫
H
ψ(x) dx.

The coordinates of x are independent if ψ factorizes as ψ = ψ1 × . . .× ψp, i.e.

ψ(t1, . . . , tp) = ψ1(t1) · ψ2(t2) · · ·ψp(tp),

i.e. for sets H ⊆ Rp of the form H = H1 × . . .×Hp, where Hi ⊂ R for each i = 1, . . . , p,

we have

P{(t1, . . . , tp) ∈ Rp | t1 ∈ H1, . . . , tp ∈ Hp}

= P {(t1, . . . , tp) ∈ H1 × . . .×Hp}

=

∫
H1×...×Hp

ψ(t1, . . . , tp) dt1 . . . dtp

=

∫
H1×...×Hp

ψ1(t1) · . . . · ψp(tp) dt1 . . . dtp

=

∫
Hp

. . .

(∫
H2

(∫
H1

ψ1(t1) dt1

)
ψ2(t2) dt2

)
. . . ψp(tp) dtp

=

∫
H1

ψ1(t1) dt1 ·
∫
H2

ψ1(t2) dt2 · · ·
∫
Hp

ψ1(tp) dtp

= P {t1 ∈ H1} · P {t2 ∈ H2} · · · · · P {tp ∈ Hp} .

Note that ψ1, . . . , ψp are necessarily probability distributions on R for the components

ti of x.

We now consider Gaussian random vectors where the coordinates are i.i.d. (independent

and identically distributed) standard Gaussians.

Definition 2.1. A standard Gaussian random vector x = (t1, . . . , tp) ∈ Rp is given by a

probability distribution such that



(i) all t1, . . . , tp are independent and

(ii) each ti has a standard Gaussian distribution ti ∼ N(0, 1), i.e.,

ψi(ti) =
1√
2π

exp

(
−t

2
i

2

)
and thus

ψ(x) = ψ(t1, . . . , tp)

= ψ1(t1) · . . . · ψp(tp)

=
1

(2π)
p
2

exp

(
−1

2

(
t21 + t22 + . . .+ t2p

))

=
1

(2π)
p
2

exp

(
−∥x∥2

2

)
.

We denote this by x ∼ N(0, Ip), where 0, the vector of all zeros, is the vector of means,

and Ip, the p× p identity matrix, is the matrix of covariances.

2.2. Concentration of the norm

In numerical simulations we also have seen concentration for such Gaussian random vec-

tors, i.e., we expect

P {x ∈ Rp : |f(x)− E[f(x]| ≥ ε}

to be small for large p and for some “nice” (still to be determined) classes of functions f .

Consider f(x) = ∥x∥2; then

E[∥x∥2] = E[t21 + . . .+ t2p] = E[t21] + . . .+ E[t2p] = 1 + . . .+ 1 = p,

so we expect that ∥x∥2 is close to p and thus ∥x∥ is close to √
p. Note that E[∥x∥] ̸=

√
p: they only asymptotically approach each other. Often it is easier to compare f(x)

with easier quantities than E[f(x)], which asymptotically of course have to approximate

E[f(x)] (e.g., the median might also be a good choice).

Let us now try to prove the following:

Theorem 2.2. Consider a p-dimensional standard Gaussian random vector x ∼ N(0, Ip).

Then, for 0 ≤ ε ≤ √
p,

P {x ∈ Rp : |∥x∥ − √
p| ≥ ε} ≤ 2 exp

(
− ε2

16

)
,



or, in the rescaled version x̃ = 1√
p
x, where x̃ = (t̃1, . . . , t̃p) with i.i.d. ti ∼ N

(
0, 1

p

)

P {x̃ ∈ Rp : |∥x̃∥ − 1| ≥ ε} ≤ 2 exp

(
−pε

2

16

)
.

Proof (getting started). We have

P {|∥x∥ − √
p| ≥ ε} ≤ P {|∥x∥ − √

p| · (∥x∥+√
p) ≥ ε

√
p}

= P
{∣∣∥x∥2 − p

∣∣ ≥ ε
√
p
}
.

So we have reduced a concentration question for ∥x∥ to one for ∥x∥2. But ∥x∥2 = t21 +

. . . + t2p is the sum of independent variables, and for such there is hope. First, let us

consider such situations in general . . . proof to be continued later!

2.3. Markov and Chebyshev inequality

Theorem 2.3 (Markov Inequality). Let y ∈ Rp be a random vector with probability

distribution ψ and f : Rp → [0,∞) a positive function. Then, for any α > 0,

P {y ∈ Rp : f(y) ≥ α} ≤ E[f(y)]

α
.

Proof. We have

E[f(y)] =

∫
Rp

f(y)ψ(y) dy

=

∫
y∈Rp:f(y)≥α

f(y)ψ(y) dy +

∫
y∈Rp:f(y)<α

f(y)ψ(y) dy︸ ︷︷ ︸
≥0, since f≥0 and ψ≥0

≥
∫
y∈Rp:f(y)≥α

f(y)ψ(y) dy

≥ α

∫
y∈Rp:f(y)≥α

ψ(y) dy

= αP {y ∈ Rp : f(y) ≥ α} .

Unfortunately, this is not useful in our situation, since we cannot easily deal with

f(x) = E[
∣∣∥x∥2 − p

∣∣].
Theorem 2.4 (Chebyshev Inequality). Let y ∈ Rp be a random vector and f : Rp → R

a function such that the average E[f(y)] and the variance

V [f(y)] = E[(f(y)− E[f(y)])2] = E[f(y)2]− E[f(y)]2



are finite. Then, for any ε > 0,

P {y ∈ Rp : |f(y)− E[f(y)]| ≥ ε} ≤ V [f(y)]

ε2
.

Proof. We will use the Markov Inequality 2.3 for g(y) := (f(y) − E[f(y)])2. Note that

g ≥ 0 and

E[g(y)] = E[(f(y)− E[f(y)])2] = V [f(y)].

Thus, for ε > 0, we have

P {y ∈ Rp : |f(y)− E[f(y)]| ≥ ε} = P
{
y ∈ Rp : (f(y)− E[f(y)])2 ≥ ε2

}
= P

{
y ∈ Rp : g(y) ≥ ε2

}
≤ E[g(y)]

ε2

=
V [f(y)]

ε2
.

Now use this for our Gaussian random vectors y = x ∼ N(0, Ip) and f(x) = ∥x∥2: then

E[f(x)] = E[∥x∥2] = p and

V [f(x)] = E
[(
∥x∥2 − p

)2]
= E

[(
(t21 − 1) + . . .+ (t2p − 1)

)2]
= pE

[
(t21 − 1)2

]
= pE

[
t41 − 2t21 + 1

]
= p

(
E[t41]− 2E[t21] + 1

)
= p(3− 2 + 1)

= 2p.

Alternatively, we can also calculate this directly in terms of the variance, by using the

fact that the variance of a sum of independent variables is the sum of the variances:

V [∥x∥2] = V (t21 + · · ·+ t2p)

= V (t21) + · · ·+ V (t2p)

= pV (t21)

= p(E[t41]− E[t21]
2)

= p(3− 1)

= 2p



Applying now the Chebyshev inequality 2.4 to this setting, we get

P
{
x ∈ Rp :

∣∣∥x∥2 − p
∣∣ ≥ ε

√
p
}
≤ V [∥x∥2]

ε2 · p
=

2p

ε2 · p
=

2

ε2
.

Thus,

P {x ∈ Rp : |∥x∥ − √
p| ≥ ε} ≤ 2

ε2
,

which is still far away from our exponential estimate in Theorem 2.2.

2.4. Bernstein inequality

We have to strengthen Markov/Chebyshev by also taking higher moments into account.

This can be done systematically by looking at all moments simultaneously via their gen-

erating power series.

Consider a random vector y ∈ Rp and a function f : Rp → R. Then

E[exp(λf(y))] = E

[
∞∑
k=0

(λf(y))k

k!

]
=

∞∑
k=0

λk

k!
E[f(y)k],

where E[f(y)k] is the k-th moment of f(y), is the generating function in moments, where

the choice of λ allows to weigh the contributions of the moments differently.

For each fixed λ ∈ R, the function y 7→ exp(λf(y)) is positive, so we can apply the

Markov Inequality 2.3 to it, i.e. for each λ > 0 we have

P {f(y) ≥ α} = P {exp(λf(y)) ≥ exp(λα)} ≤ E[exp(λf(y))]

exp(λα)

(by using that exp(λ·) is increasing for each λ > 0). We can optimize this by choosing

the best λ > 0:

P {f(y) ≥ α} ≤ inf
λ>0

exp(−λα)E[exp(λf(y))].

Without further information on f and y this is not very useful. Now invoke that

• y = (s1, . . . , sp) has independent coordinates, i.e. ψ(s1, . . . , sp) = ψ1(s1) · · ·ψp(sp),

and

• f is a sum of functions of the coordinates, i.e. f(s1, . . . , sp) = f1(s1) + · · ·+ fp(sp).

Then

exp(λf(y)) = exp
(
λ · (f1(s1) + · · ·+ fp(sp))

)
= exp(λf1(s1)) · · · exp(λfp(sp)),



and, by independence,

E
[
exp(λf(y))

]
= E

[
exp(λf1(s1))

]
· · ·E

[
exp(λfp(sp))

]
.

The right-hand side factors should not grow too fast; often they are of order ∼ ecλ
2 , then

we get good overall control. Note that for Gaussian distributions

1√
2π

∫
R
exp(λt) exp

(
−t

2

2

)
dt =

1√
2π

∫
R
exp

(
−(t− λ)2

2

)
exp

(
λ2

2

)
dt

= exp

(
λ2

2

)
1√
2π

∫
R
exp

(
−(t− λ)2

2

)
dt︸ ︷︷ ︸

=1

= exp

(
λ2

2

)
.

Now consider again our Gaussian random vectors y = x ∼ N(0, Ip), where

f(x) = ∥x∥2 − p = t21 + . . .+ t2p − p = (t21 − 1)︸ ︷︷ ︸
=g(t1)

+ . . .+ (t2p − 1)︸ ︷︷ ︸
=g(tp)

,

so all fi are the same:

f1 = . . . = fp = g with g(t) = t2 − 1

and

ψ1 = . . . = ψp = φ where φ(t) =
1√
2π

exp

(
−t

2

2

)
.

If λ < 1
2
, then by substituting s = t

√
1− 2λ we get

E[exp
(
λg(t)

)
] = E

[
exp
(
λ(t2 − 1)

)]
=

1√
2π

∫ +∞

−∞
exp
(
λ(t2 − 1)

)
exp

(
−t

2

2

)
dt

=
1√
2π

exp(−λ)
∫ +∞

−∞
exp

(
−t

2

2
(1− 2λ)

)
dt

=
1√
2π

exp(−λ)
∫ +∞

−∞
exp

(
−s

2

2

)
ds︸ ︷︷ ︸

=
√
2π

· 1√
1− 2λ

=
exp(−λ)√
1− 2λ

.

Note that E
[
exp
(
λ(t2 − 1)

)]
does not exist (or is equal to ∞) for λ ≥ 1

2
. So now we get

P {f(x) ≥ α} ≤ inf
0<λ< 1

2

exp(−λα)E
[
exp
(
λg(t)

)]p
= inf

0<λ< 1
2

exp(−λα)exp(−λp)
(1− 2λ)

p
2

,



where the last factor behaves like (or at least can be estimated against) exp(λ2c).

Lemma 2.5. Let t ∼ N(0, 1) be a one-dimensional standard Gaussian random variable.

Then

E
[
exp
(
λ(t2 − 1)

)]
≤ exp(4λ2) for all |λ| ≤ 1

4
.

Proof. Either use

(i) estimate for explicit calculation

E
[
exp
(
λ(t2 − 1)

)]
=

exp(−λ)√
1− 2λ

≤ exp(4λ2) for all |λ| ≤ 1

4

via curve discussion,

(ii) or estimate of moments of t2 − 1: note that

∣∣t2 − 1
∣∣k = {(1− t2)k ≤ 1, if |t| ≤ 1,

(t2 − 1)k ≤ t2k, if |t| > 1,

≤ t2k + 1,

so (for k ≥ 2) ∣∣E [(t2 − 1)k
]∣∣ ≤ E

[∣∣t2 − 1
∣∣k]

=

∫
R

∣∣t2 − 1
∣∣kφ(t) dt

≤
∫
R
(t2k + 1)φ(t) dt

= E[t2k]︸ ︷︷ ︸
=(2k−1)!!

+E[1]︸︷︷︸
=1

= (2k − 1)(2k − 3) · . . . · 5 · 3 · 1 + 1

≤ (2k)(2k − 2) · . . . · 6 · 4 · 3
4
+ 1

≤ 2k−1k! · 3
4
+ 2k−1k! · 1

4

= 2k−1k!



and thus

E
[
exp
(
λ(t2 − 1)

)]
= E

[
∞∑
k=0

λk(t2 − 1)k

k!

]

≤
∞∑
k=0

λk

k!

∣∣E [(t2 − 1)k
]∣∣

= 1 + λE[t2 − 1]︸ ︷︷ ︸
=0

+
∞∑
k=2

λk

k!

∣∣E [(t2 − 1)k
]∣∣

≤ 1 +
1

2

∞∑
k=2

(2λ)k

= 1 +
(2λ)2

2(1− 2λ)︸ ︷︷ ︸
≤(2λ)2 for |λ|≤ 1

4

≤ 1 + 4λ2

≤ exp(4λ2).

Proof of Theorem 2.2. We have to estimate P
{∣∣∥x∥2 − p

∣∣ ≥ ε
√
p
}
, where we set

f(x) = ∥x∥2 − p = g(t1) + . . .+ g(tp)

with independent g(ti) and g(t) = t2 − 1 for t ∼ N(0, 1). So, with α := ε
√
p,

P
{∣∣∥x∥2 − p

∣∣ ≥ ε
√
p
}
= P {f(y) ≥ ε

√
p}+ P {f(y) ≤ −ε√p}

= 2P {f(y) ≥ ε
√
p}

≤ 2 inf
0<λ< 1

2

exp(−λα)E
[
exp
(
λ(t2 − 1)

)]︸ ︷︷ ︸
≤exp(4λ2) for λ≤ 1

4

p

≤ 2 inf
0<λ≤ 1

4

exp(−λα + 4λ2p).

Finding the minimum λ0 of h(λ) = −λα + 4λ2p yields −α + 8λ0p = h′(λ0) = 0 and

thus

λ0 =
α

8p
=
ε
√
p

8p
=

ε

8
√
p
≤ 1

4
,



since we consider 0 ≤ ε ≤ √
p. Now

h(λ0) = −λ0α + 4λ20p = − α

8p
α + 4

(
α

8p

)2

p = −α
2

8p
+

α2

16p
= − α2

16p
= − ε2p

16p
= − ε2

16

and thus

P {x ∈ Rp : |∥x∥ − √
p| ≥ ε} ≤ P

{
x ∈ Rp :

∣∣∥x∥2 − p
∣∣ ≥ ε

√
p
}
≤ 2 exp

(
− ε2

16

)
.

Remark 2.6. Note that in

f(x) = g(t1) + . . .+ g(tp)

we only used that the g(t1), . . . , g(tp) are independent and that we could estimate their

moments as

E
[
|g(t)|k

]
≤ k! · ck−1

or, (more or less) equivalently,

E
[
exp
(
λg(t)

)]
≤ exp(cλ2)

on some interval. Distributions that satisfy these properties are called sub-exponential

distributions; for them one has concentration estimates as above - those are usually called

Bernstein inequalities. Other related inequalities go under the names of Chernov inquality

and Hoeffding inequality.



3. Concentration of Gaussian random vectors for
non-linear Lipschitz functions

3.1. Lipschitz functions

Up to now we considered concentration of linear sums of independent variables:

f(t1, . . . , tp) = f1(t1) + . . .+ fp(tp).

Now we want to address more general, non-linear, functions

f(x) = f(t1, . . . , tp).

Of course, they cannot be arbitrary; the guiding principle is:

A random variable that depends (in a ‘smooth’ way) on the influence of many

independent variables (but not too much on any of them) is essentially con-

stant. (Michel Talagrand [Tal95])

Example: both

f(t1, . . . , tp) =
1

p
(t21 + . . .+ t2p) and g(t1, . . . , tp) = t21

satisfy E[f(x)] = 1 = E[g(x)]; f concentrates about 1 for large p; but g has, independent

of p, always the same spread-out distribution.

Definition 3.1. (1) A function f : Rp → R is L-Lipschitz, with Lipschitz constant

L > 0, if

|f(x)− f(y)| ≤ L∥x− y∥ for all x, y ∈ Rp.

(2) More generally, a function f : Rp → Rm is L-Lipschitz, if

∥f(x)− f(y)∥ ≤ L∥x− y∥ for all x, y ∈ Rp.

Note:

(i) a smooth (i.e., differentiable) function f is Lipschitz if and only if its gradient vector

∇f(x) =


∂f(x)

∂t1...
∂f(x)

∂tp


is bounded.



(ii) “interesting” non-differentiable Lipschitz functions for p = 1 are, e.g., the ReLU

function with L = 1, see Figure 2.

(iii) componentwise application of Lipschitz functions is Lipschitz: if f1, . . . , fp : R → R

are L-Lipschitz, then

f : Rp → Rp with f(t1, . . . , tp) =
(
f1(t1), . . . , fp(tp)

)
is also Lipschitz with the same Lipschitz constant L: with x = (t1, . . . , tp) and

y = (s1, . . . , sp) we have

∥f(x)− f(y)∥2 =

∥∥∥∥∥∥∥
f1(t1)− f1(s1)

...
fp(tp)− fp(sp)


∥∥∥∥∥∥∥
2

= |f1(t1)− f1(s1)|2︸ ︷︷ ︸
≤L2|t1−s1|2

+ . . .+ |fp(tp)− fp(sp)|2︸ ︷︷ ︸
≤L2|tp−sp|2

≤ L2
(
|t1 − s1|2 + . . .+ |tp − sp|2

)
= L2∥x− y∥2

and thus ∥f(x)− f(y)∥ ≤ L∥x− y∥.

(iv) composition of Lipschitz functions is Lipschitz; e.g., if f : Rp → Rp is L1-Lipschitz

and g : Rp → R is L2-Lipschitz, then

h := g ◦ f : Rp → R, x 7→ h(x) = g(f(x))

is also Lipschitz:

|h(x)− h(y)| = |g(f(x))− g(f(y))| ≤ L2 ∥f(x)− f(y)∥︸ ︷︷ ︸
≤L1∥x−y∥

≤ L1 · L2∥x− y∥,

so h is (L1 · L2)-Lipschitz. In particular, since if L1 = L2 = 1 then also L1 · L2 = 1,

compositions of 1-Lipschitz functions are 1-Lipschitz.

3.2. Concentration for Lipschitz functions of independent
Gaussian variables

Theorem 3.2 (Gaussian concentration for Lipschitz functions). Let f : Rp → R be an

L-Lipschitz function. Then we have for a standard Gaussian random vector x ∼ N(0, Ip)

the following concentration estimate for any α ≥ 0:

P {x ∈ Rp : |f(x)− E[f(x)]| ≥ α} ≤ 2 exp

(
− α2

2L2

)
.



t

f(t)

f(t) =

{
0, t ≤ 0,

t, t ≥ 0

Figure 2: the ReLU function (rectified linear unit).

Proof. (1) We start with some simplifications: by shifting f ⇝ f−E[f(x)], the Lipschitz

property is not affected, so we can assume that E[f(x)] = 0 and then we have to

prove

P {x ∈ Rp : |f(x)| ≥ α} ≤ 2 exp

(
− α2

2L2

)
.

Since

{x ∈ Rp : |f(x)| ≥ α} = {x ∈ Rp : f(x) ≥ α} ∪ {x ∈ Rp : f(x) ≤ −α}

and f and −f have the same Lipschitz constant, it suffices to prove

P {x ∈ Rp : f(x) ≥ α} ≤ exp

(
− α2

2L2

)
.

Since one can approximate general Lipschitz functions by smooth functions, we can

restrict to the case where f is smooth and ∥∇f(x)∥ ≤ L for all x ∈ Rp and we will

prove a bit weaker estimate: instead of exp
(
− α2

2L2

)
we will get exp

(
− 2
π2

α2

L2

)
. The

following elegant proof for this is due to Maurey and Pisier [Pis06].

(2) Now let’s get started in the usual way: for each λ > 0 (to be determined later) we

have
P {x ∈ Rp : f(x) ≥ α} = P {x ∈ Rp : exp(λf(x)) ≥ exp(λα)}

≤ E[exp(λf(x))]

exp(λα)
.

So as before, we need to estimate E[exp(λf(x))]. To do so, we need two general

ingredients, which we will recall first... our proof will then be continued later.

Theorem 3.3 (Jensen Inequality). Consider a random vector x ∈ Rp with probability

density ψ, i.e.

E[f(x)] =

∫
R
f(x)ψ(x) dx for all f : Rp → R.



Let h : R → R be a convex function. Then for any f : Rp → R we have

h(E[f(x)]) ≤ E[h(f(x))].

In particular, since for any λ the function h(t) = exp(λt) is convex, we have

exp(λE[f(x)]) ≤ E[exp(λf(x))] for any λ ∈ R.

Recall:

(1) h convex means

h(α1t1 + α2t2) ≤ α1h(t1) + α2h(t2) for all α1, α2 ≥ 0 with α1 + α2 = 1.

By induction, we get

h(α1t1 + . . .+ αmtm) ≤ α1h(t1) + . . .+ αmh(tm)

for all ti and αi ≥ 0 such that α1+ . . .+αm = 1. Jensen Inequality is the continuous

version of this (where Σ⇝
∫

).

(2) At points where h is differentiable, h lies above its tangent.

but also at other points there are such “support” lines, but they don’t have to be

unique: h(t) = |t| is convex, but not differentiable at t = 0.



Nevertheless, there are many “support” lines.

Proof of Theorem 3.3. Put m := E[f(x)] and choose a support line at m, i.e. we have

a, b ∈ R such that h(t) ≥ at+ b for all t and h(m) = am+ b.

Then we have

E[h(f(x))] =

∫
R
h(f(x))︸ ︷︷ ︸
≥af(x)+b

ψ(x) dx

≥ a

∫
R
f(x)ψ(x) dx︸ ︷︷ ︸
=E[f(x)]=m

+b

∫
R
ψ(x) dx︸ ︷︷ ︸
=1

= am+ b

= h(m)

= h(E[f(x)]).

If E[f(x)] = 0, then we have in particular

E[exp(−λf(x))] ≥ exp(−λE[f(x)]) = exp(0) = 1

and thus we can estimate

E
[
exp
(
λf(x)

)]
= E

[
exp
(
λf(x)

)]
· 1

≤ E
[
exp
(
λf(x)

)]
· E
[
exp
(
−λf(y)

)]
= E

[
exp
(
λf(x)

)
· exp

(
−λf(y)

)]
= E

[
exp
(
λ(f(x)− f(y))

)]
,



where y is a copy of x, which is independent from x, i.e.
(
x
y

)
∈ R2p is a 2p-dimensional

Gaussian random vector.

Why do we introduce this y? Because we can write

f(x)− f(y) =

∫ π
2

0

∂

∂θ
f
(
cos(θ)y + sin(θ)x︸ ︷︷ ︸

=:x(θ)

)
dθ =

∫ π
2

0

∇f(x(θ)) · x′(θ)

and x(θ), x′(θ) are, for each θ, a pair of independent standard Gaussian vectors.

Lemma 3.4. Let x and y be two independent standard Gaussian random vectors in Rp.

For θ ∈ R we consider

x(θ) := cos(θ)y + sin(θ)x and y(θ) := − sin(θ)y + cos(θ)x = x′(θ).

Then, for each θ ∈ R, x(θ) and y(θ) are also two independent standard Gaussian random

vectors in Rp.

Example. For θ = π
2

this says that if x, y ∼ N(0, Ip) are independent, then also

1√
2
(x+ y) ∼ N(0, Ip) and

1√
2
(x− y) ∼ N(0, Ip)

are independent.

Proof of Lemma 3.4. By assumption, (x, y) ∈ R2p has density

ψ(x, y) =
1

(2π)
p
2

exp

(
−1

2
∥x∥2

)
· 1

(2π)
p
2

exp

(
−1

2
∥y∥2

)

=
1

(2π)p
exp

(
−1

2
(∥x∥2 + ∥y∥2)

)

=
1

(2π)p
exp

(
−1

2

∥∥∥∥(xy
)∥∥∥∥2

)
,

i.e.
(
x
y

)
∼ N(0, I2p). The replacement

(
x
y

)
⇝

(
x(θ)
y(θ)

)
is a unitary transformation in

R2p: with

U =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
∈ R2×2



as well as

x(θ) = (t1(θ), . . . , tp(θ)) and y(θ) = (s1(θ), . . . , sp(θ)),

we have 

t1(θ)
s1(θ)
t2(θ)
s2(θ)

...
tp(θ)
sp(θ)


=


U 0
U

. . .

0 U


︸ ︷︷ ︸

=:V

·



t1
s1
t2
s2
...
tp
sp


and thus by the behaviour of Gaussian random vectors under linear transformations (see

Assignment 2, Exercise 4) 

t1(θ)
s1(θ)
t2(θ)
s2(θ)

...
tp(θ)
sp(θ)


∼ N(0, V I2pV

T︸ ︷︷ ︸
=I2p

),

i.e. for each θ we again have a standard Gaussian random vector in R2p.

Now we continue:

Proof of Theorem 3.2. We have to estimate

E
[
exp
(
λf(x)

)]
≤ E

[
exp
(
λ(f(x)− f(y)

)]
= E

[
exp

(
λ

∫ π
2

0

∂

∂θ
f
(
x(θ)

)
dθ

)]

= E

[
exp

(
λ

∫ π
2

0

∇f
(
x(θ)

)
· x′(θ) dθ

)]
,

where

• f is smooth and L-Lipschitz, i.e. ∥∇f(·)∥ ≤ L,

• x ∼ N(0, Ip),

• y is an independent copy of x,

• x(θ) = cos(θ)y+ sin(θ)x, thus x′(θ) = − sin(θ)y+ cos(θ)x and thus, by Lemma 3.4,(
x(θ), x′(θ)

)
∼ N(0, I2p) for all θ ∈ R.



We use Jensen’s inequality now for an average of the form 1
π/2

∫ π
2

0
g(θ) dθ and the convex

function h(t) = exp(ct), i.e.

exp

(
c · 1

π/2

∫ π
2

0

g(θ) dθ

)
≤ 1

π/2

∫ π
2

0

exp
(
cg(θ)

)
dθ

for g(θ) = ∇f
(
x(θ)

)
· x′(θ) and c = λ · π

2
yielding

E
[
exp
(
λf(x)

)]
≤ E

[
1

π/2

∫ π
2

0

exp
(
λ · π

2
· ∇f

(
x(θ)

)
· x′(θ)

)
dθ

]

=
2

π

∫ π
2

0

E
[
exp

(
λ
π

2
∇f
(
x(θ)

)
· x′(θ)

)]
︸ ︷︷ ︸

=E[exp(λπ
2
∇f(y)·x)] for all θ

dθ

= E
[
exp

(
λ
π

2
∇f(y) · x

)]
=

1

(2π)p

∫
Rp

∫
Rp

exp
(
λ
π

2
∇f(y) · x

)
· exp

(
−1

2
∥x∥2

)
· exp

(
−1

2
∥y∥2

)
dy dx.

For each fixed y, we have ∥∇f(y)∥ ≤ L and ∇f(y) ·x is a Gaussian variable with variance

at most L2, thus

1

(2π)
p
2

∫
Rp

exp
(
λ
π

2
∇f(y) · x

)
· exp

(
−1

2
∥x∥2

)
≤ exp

(
1

2

(
λ
π

2
L
)2)

for each y. Integrating over y yields

E
[
exp
(
λf(x)

)]
≤ exp

(
1

2

(
λ
π

2
L
)2)

and thus

P {f(x) ≥ α} ≤
E
[
exp
(
λf(x)

)]
exp(λα)

≤ exp

(
1

2
λ2
(π
2
L
)2

− λα

)
.

Minimizing the exponent function h(λ) = 1
2
λ2
(
π
2
L
)2 − λα yields λ0 = 4

π2
α
L2 with

h(λ0) =
1

2
λ20

(π
2
L
)2

− λ0α =
1

2

(
4

π2

α

L2

)2 (π
2
L
)2

− 4

π2

α

L2
α

=
1

2

16

π4

α2

L4

π2

4
L2 − 4

π2

α2

L2

=
2− 4

π2

α2

L2
= − 2

π2

α2

L2

and thus

P {f(x) ≥ α} ≤ exp

(
− 2

π2

α2

L2

)
.



3.3. Generalizations of concentration inequalities

The concentration inequalities are of the form

input function−−−−→ output,

where

• the input are independent variables, which up to now were Gaussian,

• the function is linear or Lipschitz, and

• the output concentrates like a Gaussian distribution ∼ exp(−α2 · c).

Note that in the linear situation the assumption on the Gaussianity of the input distribu-

tions can be generalized quite a bit: the main ingredient was the control of E[exp(λg(t))].

Definition 3.5. Let x be a one-dimensional real random variable with E[x] = 0.

(1) x is called sub-Gaussian, if one of the following two equivalent properties is satisfied:

(i) There exists a c > 0 such that for all α ≥ 0 we have

P {|x| ≥ α} ≤ 2 exp

(
−α

2

c

)
.

(ii) There exists a c̃ > 0 such that for all λ ∈ R we have

E
[
exp(λx)

]
≤ exp(c̃λ2).

(2) x is called sub-exponential, if one of the following two equivalent properties is satis-

fied:

(i) There exists a c > 0 such that for all α ≥ 0 we have

P {|x| ≥ α} ≤ 2 exp
(
−α
c

)
.

(ii) There exists a c̃ > 0 such that for all λ ∈ R with |λ| ≤ 1
c̃

we have

E
[
exp(λx)

]
≤ exp(c̃2λ2).

Example. (i) If x is sub-Gaussian, then x is also sub-exponential.



(ii) If x ∼ N(0, 1), then x is sub-Gaussian. Furthermore, x2 − 1 is sub-exponential, but

not sub-Gaussian.

(iii) If x is bounded, then x is also sub-Gaussian.

By following the same ideas as in our proof of the linear concentration for Gaussian

random variables one can then show concentration inequalities for sub-Gaussian or for

sub-exponential distributions. Let us state a precise version for the former case and make

a remark on what is different in the latter case.

Theorem 3.6 (Hoeffding). Let t1, . . . , tp be real-valued independent sub-Gaussian ran-

dom variables with parameters σi and µi for i = 1, . . . , p; i.e.

E
[
exp
(
λ(ti − µi)

)]
≤ exp

(
σ2
i

λ2

2

)
.

Then, for all α ≥ 0,

P

{
p∑
i=1

(ti − µi) ≥ α

}
≤ exp

(
− α2

2
∑p

i=1 σ
2
i

)
.

Remark. For sub-exponential distributions one has a similar statement (the Bernstein

Inequality), but then one has two different behaviours for small and for large deviations:

if S is the sum of independent sub-exponential variables with mean zero, then small

derivations (close to the mean) have normal tails (∼ exp(−α2)), while large deviations

(far from the mean) have exponential tails (∼ exp(−α)).

In the Lipschitz case, going away from normal distributions is more subtle, one needs

stronger conditions on the function f . (One should in particular note that Lemma 3.4 is



only true for Gaussian distributions.) The following is a famous basic version of such an

estimate, due to Talagrand. We will not address its proof; this would require new ideas.

Theorem 3.7 (Talagrand concentration inequality). Let t1, . . . , tp be independent bound-

ed random variables with |ti| ≤ k for all i = 1, . . . , p, for some k > 0. Let f : Rp → R be

L-Lipschitz and convex. Then, for any α ≥ 0,

P {x = (t1, . . . , tp) ∈ Rp : |f(x)− E[f(·)]| ≥ αk} ≤ c1 · exp
(
−c2 ·

α2

L2

)
.

Note that there are counter-examples showing that the statement is not true without

the convexity assumption.



4. Wishart Random Matrices

Consider data described by a Gaussian random vector x ∼ N(0,Σ), where Σ ∈ Rp×p is the

covariance matrix. Consider n independent draws from this distribution, i.e. x1, . . . , xn ∈

Rp are independent with xk ∼ N(0,Σ), and denote by X =
(
x1 x2 . . . xn

)
∈ Rp×n the

data matrix. Then

Σ̂ :=
1

n
XXT =

1

n

n∑
k=1

xkx
T
k ,

called a Wishart matrix, is an estimator for Σ.

4.1. Concentration for the largest eigenvalue of Wishart
matrices

We want to understand the spectral properties of Σ̂, i.e. the eigenvalues of Σ̂, or the

singular values of X. Let us first restrict to the largest singular value, i.e. ∥X∥. Recall

that any matrix X ∈ Rp×n can be identified with a map X : Rn → Rp. As a map,

∥·∥ : Rp×n ∼= Rpn → R, ∥X∥ := sup
v∈Rn

∥v∥=1

∥Xv∥

is Lipschitz: for X1, X2 ∈ Rp×n,

|∥X1∥ − ∥X2∥| ≤ ∥X1 −X2∥ ≤ ∥X1 −X2∥Rpn ,

where we use the general estimate for the norm of a matrix compared to its norm as a

vector: if X = (xij) i=1,...,p
j=1,...,n

, then

∥X∥ ≤ ∥X∥F :=

√√√√ p∑
i=1

n∑
j=1

|xij|2,

where ∥·∥F is called the Frobenius norm. Thus ∥·∥ is 1-Lipschitz and we can apply

our Gaussian concentration inequality for Lipschitz functions. Note that X ∼ N(0, Ipn)

corresponds to Σ = Ip.

Theorem 4.1. Suppose X = (xij) i=1,...,p
j=1,...,n

is a standard Gaussian random matrix, i.e. all

xij are independent and each xij ∼ N(0, 1) is a standard Gaussian variable. Then

P {|∥X∥ − E[∥·∥]| ≥ α} ≤ 2 exp

(
−α

2

2

)
.



This is a nice concentration about the expectation, but it does not tell us what the

expectation is! Note that we can write

∥X∥ = max
v∈Rn

w∈Rp

∥v∥=1=∥w∥

⟨Xv,w⟩

also as the maximum over (infinitely many!) terms which we can control better. We can

go from infinitely many to finitely many conditions, by approximating all v and w by

elements from ε-nets. It’s a bit easier to do this for balls than for spheres, so let us write

∥X∥ = max
∥v∥≤1
∥w∥≤1

⟨Xv,w⟩,

and let N now be an ε-net for

Bn = {v ∈ Rn : ∥v∥ ≤ 1} ,

i.e. N ⊂ Bn such that

∀v ∈ Bn ∃ṽ ∈ N : ∥v − ṽ∥ < ε.

We want N to be as small as possible; it is easy to see that there exists an ε-net N with

|N | ≤
(
2

ε
+ 1

)n
.

To see this, inductively construct an ε-net v1, v2, v3, . . . by choosing a new point vk such

that

Bn

(
vk,

ε

2

)
∩ Bn

(
vi,

ε

2

)
= ∅ for all i = 1, . . . , k − 1.

Note that all Bn
(
vk,

ε
2

)
are disjoint and

⋃
k

Bn

(
vk,

ε

2

)
⊂ Bn

(
0, 1 +

ε

2

)
,

since vk ∈ Bn(0, 1). Thus this inductive construction must stop after a finite number N

of steps, for which we have

N · vol
(
Bn

(ε
2

))
≤ vol

(
Bn

(
1 +

ε

2

))
,

therefore

N ≤
vol
(
Bn
(
1 + ε

2

))
vol
(
Bn
(
ε
2

)) =

(
1 + ε

2

)n(
ε
2

)n =

(
2

ε
+ 1

)n
.



Now N = {v1, . . . , vN} is an ε-net, since if there would be a point v with ∥v − vk∥ ≥ ε

for all k = 1, . . . , N , then this v could be chosen as vN+1 in our construction.

Let us fix for the following ε = 1
4

and thus 2
ε
+ 1 = 9. Then we can choose an ε-net N

for Bn and an ε-net M for Bp with |N | ≤ 9n and |M| ≤ 9p. Now we can estimate ∥X∥ as

a maximum where we only run over the finite nets N and M. Let v ∈ Bn and w ∈ Bp be

the maximizer for ∥X∥ = ⟨Xv,w⟩ (note that we are in finite dimensions, where the unit

ball is compact, so that the supremum in the definition of the operator norm is indeed a

maximum); then there exist ṽ ∈ N and w̃ ∈ M such that

∥v − ṽ∥ < ε and ∥w − w̃∥ < ε.

Then
⟨Xv,w⟩ = ⟨X(ṽ + (v − ṽ)), w̃ + (w − w̃)⟩

= ⟨Xṽ, w̃⟩+ ⟨Xṽ, w − w̃⟩+ ⟨X(v − ṽ), w⟩

≤ ⟨Xṽ, w̃⟩+ ∥X∥ · ∥ṽ∥︸︷︷︸
=1

· ∥w − w̃∥︸ ︷︷ ︸
<ε

+∥X∥ · ∥v − ṽ∥︸ ︷︷ ︸
<ε

· ∥w̃∥︸︷︷︸
=1

≤ ⟨Xṽ, w̃⟩+ 2ε∥X∥,

thus

∥X∥ ≤ max
ṽ∈N
w̃∈M

⟨Xṽ, w̃⟩+ 2ε∥X∥

and so

∥X∥ ≤ 1

1− 2ε
max
v∈N
w∈M

⟨Xv,w⟩.

This means that if ∥X∥ ≥ α, then there exist v ∈ N and w ∈ M such that

⟨Xv,w⟩ ≥ α(1− 2ε)

and thus

P {∥X∥ ≥ α} ≤ P


⋃
v∈N
w∈M

{⟨Xv,w⟩ ≥ α(1− 2ε)}


≤
∑
v∈N
w∈M

P {⟨Xv,w⟩ ≥ α(1− 2ε)} .

Hence we need now the concentration inequality only for the finitely many summands on

the right-hand side. Note that

⟨Xv,w⟩ =
p∑
i=1

n∑
j=1

xijvjwi,



where all xij ∼ N(0, 1) are independent, which yields for ⟨Xv,w⟩ a Gaussian distribution

with variance

σ2 =

p∑
i=1

n∑
j=1

v2jw
2
i = ∥v∥2 · ∥w∥2 ≤ 1,

thus

P {⟨Xv,w⟩ ≥ α} ≤ 1

2
exp

(
−α

2

2

)
,

or now with α replaced with α(1− 2ε) = 1
2
α for ε = 1

4
,

P
{
⟨Xv,w⟩ ≥ α

2

}
≤ 1

2
exp

(
−α

2

8

)
.

This then yields (since 9 ≤ exp(3))

P {∥X∥ ≥ α} ≤ |N | · |M| · 1
2
exp

(
−α

2

8

)
=

1

2
· 9n · 9p · exp

(
−α

2

8

)
≤ 1

2
exp

(
3n+ 3p− α2

8

)
=

1

2
exp

(
−1

8
(α2 − 24n− 24p)

)
.

Put α =
√
24(

√
n+

√
p) + u, then α2 ≥ u2 + 24n+ 24p and thus

P
{
∥X∥ ≥

√
24(

√
n+

√
p) + u

}
≤ 1

2
exp

(
−u

2

8

)
.

The term
√
24(

√
n+

√
p) gives the right order of ∥·∥, but the constants are off quite a bit.

In order to get a more precise understanding of the maximal eigenvalue (or its expected

value), in particular in the asymptotic regime n, p → ∞, one needs other tools. We will

not pursue this any further, but instead we will now look at the collection of all singular

values of X or of all eigenvalues of Σ̂; i.e., we want now to understand the asymptotics of

the histograms of the eigenvalues.

4.2. Eigenvalue distribution of Wishart matrices and
Marchenko-Pastur law

Recall our setting: x1, . . . , xn ∈ Rp are independent vectors with xk ∼ N(0,Σ). We now

restrict to the case Σ = Ip. With X =
(
x1 x2 . . . xn

)
∈ Rp×n we have the Wishart



matrix

Σ̂ :=
1

n
XXT =

1

n

n∑
k=1

xkx
T
k ∈ Rp×p.

What can we say about the eigenvalues of Σ̂?

Let λ1(A) ≤ λ2(A) ≤ . . . ≤ λp(A) be the eigenvalues of a symmetric matrix A = AT ∈

Rp×p. Then one has, as for the maximal eigenvalue,

|λi(A)− λi(B)| ≤ ∥A−B∥ ≤ ∥A−B∥F ,

i.e. the maps A 7→ λi(A) for i = 1, . . . , p are Lipschitz and thus also the map

A 7→ (λ1(A), . . . , λp(A))

is Lipschitz. However: since X is our matrix with independent Gaussian entries, we are

interested in the mapping

X 7→
(
λ1

(
1

n
XXT

)
, . . . , λp

(
1

n
XXT

))
.

For this, the Lipschitz constant is modified as follows:∣∣∣∣λi( 1

n
XXT

)
− λi

(
1

n
Y Y T

)∣∣∣∣ ≤ 1

n

∥∥XXT − Y Y T
∥∥

=
1

n

∥∥XXT −XY T +XY T − Y Y T
∥∥

≤ 1

n

(
∥X∥ ·

∥∥XT − Y T
∥∥︸ ︷︷ ︸

≤∥X−Y ∥F

+ ∥X − Y ∥︸ ︷︷ ︸
≤∥X−Y ∥F

·
∥∥Y T

∥∥)

≤ 1

n

(
∥X∥+ ∥Y ∥

)
· ∥X − Y ∥F

≤ 2

n
max

(
∥X∥, ∥Y ∥

)
· ∥X − Y ∥F .

Thus, the Lipschitz constant is bounded by

L =
2

n
max

(
∥X∥, ∥Y ∥

)
.

Note that the estimate ∥X∥ ≤ ∥X∥F = ∥X∥Rpn is not helpful, since we know that

∥X∥Rpn ∼ √
pn. But let us have a closer look on this, as it also reveals the difference

between classical and modern regimes.



• In the classical regime, where p is fixed and n→ ∞, this would be okay, since then

L ∼ 2
√
p
1

n

√
n ∼ c

1√
n
,

which would give good concentration.

• But we now are interested in the “modern regime”, where p ∼ n → ∞, say p = γn

for fixed γ. Then

L ∼ 2
1

n

√
γn · n = 2

√
γ ∼ constant,

which does not give good concentration.

So let’s keep the operator norm ∥X∥ in L; for this we already know that we have good

concentration around ∼ c(
√
n+

√
p) ∼ c(1 +

√
γ)
√
n and thus with high probability

L ∼ 2
1

n
c(1 +

√
γ)
√
n ∼ c̃

1√
n
.

By Theorem 3.2, this then gives concentration of λi(Σ̂) around its expected value with

2 exp

(
− α2

2L2

)
∼ 2 exp

(
−nα

2

2c̃2

)
as bound for the probability of deviation α from the mean.

This means: in the regime p = γn for fixed γ and n → ∞, the eigenvalue distribution

of Σ̂ concentrates on its average. The scaling factor 1
n

in Σ̂ ensures that we have a limit

for n→ ∞.

In numerical simulations we have seen that in this regime (p = γn → ∞) we have a

nice asymptotic form for the (averaged and thus also typical) eigenvalue distribution.



Theorem 4.2 (Marchenko-Pastur Law, 1967, [MP67]). Let X ∈ Rp×n ∼= Rnp be our

standard Gaussian random matrix (where all entries xij ∼ N(0, 1)). If p
n
→ γ ∈ (0, 1] as

n→ ∞, then the histogram of the eigenvalues of Σ̂ = 1
n
XXT converges to the Marchenko-

Pastur density

ψMP(t) =
1

2πγt

√
(γ+ − t)(t− γ−) on [γ−, γ+],

where

γ− := (1−√
γ)2 and γ+ := (1 +

√
γ)2.

Remark. Note that the statement is of the form

1

p

p∑
i=1

f(λi)
n→∞−−−→
p=γn

∫
f(t)ψMP(t) dt, (1)

where f = 1[a,b] is the characteristic function of the interval [a, b] (see Figure 3) and

λ1, . . . , λp are the eigenvalues of Σ̂. Proving (1) directly is not so clear, but can be achieved

by proving analogous statements for other classes of functions. Instead of proving (1) for

(i) all f = 1[a,b] for all a < b,

one proves it for

(ii) all moments f(t) = tn for all n ∈ N, or

(iii) all resolvents f(t) = 1
t−z for all z ∈ C+. (C+ denotes the complex upper half plane.)



t

1[a,b](t)

a b

1
1[a,b](t) =

{
1, t ∈ [a, b],

0, t /∈ [a, b]

Figure 3: the characteristic function 1[a,b] of an interval [a, b].

In our situation, either (ii) or (iii) are equivalent to (i). By concentration, it suffices to

prove in each case the version for the average, i.e. one has to prove

1

p

p∑
i=1

E
[
f(λi)

]
→
∫
f(t)ψMP(t) dt. (2)

Note for this that 1
t−z and tn (if we restrict them to a compact interval) are Lipschitz

functions.

We will give in the following the main ideas for the proof of (2) in the case (iii).

Lemma 4.3. Let A ∈ Rp×p be a symmetric matrix, i.e. A = AT , with (necessarily real)

eigenvalues λ1, . . . , λp. Then, for any z ∈ C \ {λ1, . . . , λp}, we have

1

p

p∑
i=1

1

λi − z
= tr

[
(A− zIp)

−1
]
,

where tr = 1
p
Tr is the normalized trace on Rp×p.

Proof. Since A = AT , it can be diagonalized by an orthogonal matrix O, i.e. OOT =

Ip = OTO, in the form A = ODOT , where

D =


λ1 0

λ2
. . .

0 λp

 .

Then, A− zIp = O(D − zIp)OT and thus (A− zIp)
−1 = O(D − zIp)

−1OT , hence

tr
[
(A− zIp)

−1
]
=

1

p
Tr
[
O(D − zIp)

−1OT
]
=

1

p
Tr
[
(D − zIp)

−1
]
=

1

p

p∑
i=1

1

λi − z



since

(D − zIp)
−1 =


λ1 − z 0

λ2 − z
. . .

0 λp − z


−1

=


(λ1 − z)−1 0

(λ2 − z)−1

. . .
0 (λp − z)−1

 .

Note that, independent of the specific form of A = AT , this always makes sense if z /∈ R.

Definition 4.4. (1) For our Wishart matrices Σ̂ = 1
n
XXT ∈ Rp×p we define their

Stieltjes transform as

Sn(z) := E
[
tr
[
(Σ̂− zIp)

−1
]]

for z ∈ C \ R.

(2) For the Marchenko-Pastur distribution ψMP we define its Stieltjes transform as

SMP(z) :=

∫
1

t− z
ψMP dt for z ∈ C \ R.

So what we have to prove is the convergence of the Stieltjes transforms:

Sn(z)
n→∞−−−→
p=γn

SMP(z) for all z ∈ C \ R.

Remark. We will derive an equation for

S(z) := lim
n→∞
p=γn

Sn(z);

of course, it has to be proven that this limit exists, but we will not bother about this.

Then we have to check that S(z) = SMP(z). Note that for X =
(
x1 x2 . . . xn

)
,

Sn(z) = E

tr
( 1

n

n∑
i=1

xkx
T
k − zIp

)−1
 =

n

p
E

Tr
( n∑

i=1

xkx
T
k − nzIp

)−1
 ,

where we can interpret
n∑
i=1

xkx
T
k =

(
n−1∑
i=1

xkx
T
k

)
+ xnx

T
n

as a deformation of
∑n−1

i=1 xkx
T
k with the rank-1-matrix xnxTn .



Lemma 4.5 (Sherman-Morrison Formula). Let A ∈ Rp×p and x, y ∈ Rp. Then

(A+ xyT )−1 = A−1 − A−1xyTA−1

1 + yTA−1x

whenever A is invertible and 1 + yTA−1x ̸= 0.

(Note: xyT ∈ Rp×p is a (p× p)-matrix of rank 1, ⟨y, x⟩ = yTx ∈ R1×1 is a real number,

and yTA−1x = ⟨y, A−1x⟩ ∈ R.)

Proof. Either check that the RHS is the inverse of the LHS, or calculate formally

(A+ xyT )−1 = A−1(Ip + xyTA−1)−1

= A−1
(
Ip − xyTA−1 + x yTA−1x︸ ︷︷ ︸

∈R

yTA−1 ∓ . . .
)

= A−1

(
Ip − xyTA−1

(
∞∑
k=0

(−yTA−1x)k

))

= A−1

(
Ip − xyTA−1 · 1

1 + yTA−1x

)

= A−1 − A−1xyTA−1

1 + yTA−1x
.

From Lemma 4.5 we also get

yT (A+ xyT )−1x = yTA−1x− (yTA−1x)(yTA−1x)

1 + yTA−1x
=

yTA−1x

1 + yTA−1x
.

We will now choose x = y = xn and

A =
n−1∑
k=1

xkx
T
k − nzIp.

Note that A, and thus also A−1, is independent from xn.

Lemma 4.6. Let x ∼ N(0, Ip) be a standard Gaussian vector in Rp and B ∈ Rp×p a

deterministic or random matrix independent from x. Then

Ex[x
TBx] = Tr(B).

Proof. Let B = (bij)
p
i,j=1. We have

Ex[x
TBx] = Ex[⟨x,Bx⟩] =

p∑
i,j=1

E[xibijxj] =

p∑
i,j=1

bijE[xixj] =

p∑
i,j=1

bijδij =

p∑
i=1

bii

= Tr(B).



Proof of Theorem 4.2. Let us apply all this to

Sn(z) =
n

p
E

Tr
(n−1∑

i=1

xkx
T
k − nzIp + xnx

T
n

)−1
 ,

and denote

A :=
n−1∑
i=1

xkx
T
k − nzIp as well as B := A+ xnx

T
n .

Then

xTnB
−1xn =

xTnA
−1xn

1 + xTnA
−1xn

≈ Tr(A−1)

1 + Tr(A−1)
.

This is actually true if we replace xn on the LHS by xk for any k = 1, . . . , n. Note that

A depends on the choice of k,2 but by concentration, they are all close to E[. . .], which is

independent of k. Now

Tr(A−1)

1 + Tr(A−1)
≈ xTkB

−1xk = Tr(xTkB
−1xk︸ ︷︷ ︸

∈R

) = Tr(xkx
T
kB

−1︸ ︷︷ ︸
∈Rp×p

)

and thus

n · Tr(A−1)

1 + Tr(A−1)
≈

n∑
k=1

xTkB
−1xk

=
n∑
k=1

Tr(xkx
T
kB

−1)

= Tr

(
n∑
k=1

xkx
T
kB

−1

)

= Tr

((
n∑
k=1

xkx
T
k

)
B−1

)

= Tr((B + nzIp)B
−1)

= Tr(Ip + nzB−1)

= p+ nzTr(B−1)

or
p

n
+ zTr(B−1) ≈ Tr(A−1)

1 + Tr(A−1)
.

2For k = 1, e.g., A would be
∑n

i=2 xix
T
i − nzIp and thus B = A+ x1x

T
1 .



Now, for large n and by concentration

Tr(B−1) ≈ E[Tr(B−1)] =
p

n
Sn(z)

and

Tr(A−1) = Tr

(
n−1∑
k=1

xkx
T
k − nzIp

)

≈ E

[
Tr

(
n−1∑
k=1

xkx
T
k − (n− 1)zIp

)]

=
p

n− 1
Sn−1(z)

≈ p

n
Sn(z).

Thus, with γ = p
n
:

γ + zγSn(z) ≈
γSn(z)

1 + γSn(z)

or in the limit with S(z) := limn→∞
p=γn

Sn(z)
3

1 + zSn(z) =
S(z)

1 + γS(z)
,

i.e.

γzS(z)2 − (1− z − γ)S(z) + 1 = 0.

This has the solution4

S(z) =
1− z − γ +

√
(z + γ − 1)2 − 4γz

2γz

=
1− z − γ +

√
(z − (1 +

√
γ)2)(z − (1−√

γ)2)

2γz

=
1− z − γ +

√
(z − γ+)(z − γ−)

2γz
.

Then check that this is the Stieltjes transform of ψMP; or, better, calculate ψMP from this

S(z) by the Stieltjes inversion formula!

3One has to argue, by abstract compactness arguments, that the limit of Sn(z) exists.
4Replacing the plus sign in front of the square root with a minus sign does not result in a solution, since

for Stieltjes transforms, S(z) ∈ C+ for z ∈ C+.



Lemma 4.7 (Stieltjes Inversion Formula). Let ψ be a continuous probability density on

R. Then its Stieltjes transform

S(z) :=

∫
1

t− z
ψ(t) dt for z ∈ C+

has a continuous extension to C+ ∪ R and

ψ(t) =
1

π
Im(S(t)) =

1

π
lim
ε→0

Im(S(t+ iε)).

Proof. For all z ∈ C \ {0}, we have

Im

(
1

z

)
=

1

2i

(
1

z
− 1

z

)
=

1

2i
· z − z

z · z
= −Im(z)

z · z

and thus
1

π
Im(S(t+ iε)) =

1

π

∫
Im

(
1

s− (t+ iε)

)
ψ(s) ds

=
1

π

∫
ε

(t− s)2 + ε2
ψ(s) ds

ε↘0−−→
∫
δt(s)ψ(s) ds = ψ(t).

Apply this to

S(z) =
1− z − γ +

√
(z − γ+)(z − γ−)

2γz
,

then we get the form of the Marchenko-Pastur distribution as claimed in Theorem 4.2

1

π
Im(S(t)) =

1

π

Im(
√
(t− γ+)(t− γ−))

2γt

=


1

2πγt

√
(γ+ − t)(t− γ−), t ∈ [γ−, γ+],

0, otherwise.



5. Spiked Signal+Noise Models

5.1. Statement of BBP transition

Consider a covariance of the form

Σ = Ip + µuuT ,

where Ip is the “noise” and µuuT is the “signal” of strength µ > 0 in direction u, where

∥u∥ = 1. In particular, µuuT is a rank 1 deformation of Ip.

We now want to address the following question: Can we see – and in particular, under

which conditions – the signal in our corresponding Wishart matrix

Σ̂ =
1

n

n∑
k=1

xkx
T
k

when we make n independent observations of x ∼ N(0,Σ)? Does Σ̂ have an eigenvalue λ

that corresponds to µ and is it visible among the eigenvalues of Σ̂ (in our usual regime
p
n
→ γ)?

In order to see the shadow λ of the eigenvalue µ, this λ must be at least γ+, so that

we see it as an outlier or a spike. Since we have concentration of the eigenvalues in the



Marchenko-Pastur bulk, none of those eigenvalues will appear as an outlier; thus, if we

see something there, it must come from µ.

Our main question is now, whether we can control the relation between λ and µ? This

is indeed the case; here is the main statement on this.

Theorem 5.1. Consider, for fixed µ ≥ 0, as above a covariance matrix of the form

Σ = Ip + µuuT .

Then, in the asymptotic regime p
n
→ γ ∈ (0, 1], the largest eigenvalue λ of Σ̂ is given

by

λ =

{
1 + µ+ γ 1+µ

µ
, if µ > √

γ,

γ+ = (1 +
√
γ)2, if µ ≤ √

γ.

Note that 1 + µ+ γ 1+µ
µ
> γ+ for µ > √

γ and for µ =
√
γ we have

1 +
√
γ + γ

1 +
√
γ

√
γ

= 1 + 2
√
γ + γ = (1 +

√
γ)2 = γ+,

thus λ is visible as long as µ >
√
γ and for µ ≤ √

γ it is swallowed by the bulk. This

theorem goes back to the works of Baik and Silverstein [BS06] as well as of Baik, Ben

Arous and Péché [BBAP05] (where more spikes and also statements on the fluctuations

of the outliers are treated). According to the latter work, the phenomenon is also known

as BBP transition.

5.2. Proof of BBP transition

Proof of Theorem 5.1, part one. We write

Σ̂ =
1

n
XXT =

1

n
Σ

1
2Y Y TΣ

1
2 ,



where xk = Σ
1
2yk and yk ∼ N(0, Ip), thus

X =
(
x1 . . . xn

)
=
(
Σ

1
2y1 . . . Σ

1
2yn
)
= Σ

1
2

(
y1 . . . yn

)
= Σ

1
2Y.

Now 1
n
Y Y T is our Wishart matrix corresponding to covariance Ip and with distribution

ψMP according to Theorem 4.2.

We are looking for an eigenvalue λ of Σ̂, outside of the support [γ−, γ+] of ψMP! Thus

0 = det

(
1

n
XXT − λIp

)
= det

(
1

n
Σ

1
2Y Y TΣ

1
2 − λIp

)
= det

(
Σ

1
2

(
1

n
Y Y T − λΣ−1

)
Σ

1
2

)
= det(Σ) · det

(
1

n
Y Y T − λΣ−1

)
= det(Ip + µuuT )︸ ︷︷ ︸

̸=0

· det
(
1

n
Y Y T − λΣ−1

)
,

so det
(
1
n
Y Y T − λΣ−1

)
= 0. By Lemma 4.5, we have

Σ−1 = (Ip + µuuT )−1 = Ip − µ
uuT

1 + µuTu
= Ip − µ

uuT

1 + µ
,

since uTu = ∥u∥2 = 1, hence

0 = det

(
1

n
Y Y T − λΣ−1

)

= det

(
1

n
Y Y T − λIp + λµ

uuT

1 + µ

)

= det

((
1

n
Y Y T − λIp

)
·

(
Ip +

(
1

n
Y Y T − λIp

)−1

· λµ uuT

1 + µ

))

= det

(
1

n
Y Y T − λIp

)
· det

(
Ip +

(
1

n
Y Y T − λIp

)−1

· λµ uuT

1 + µ

)
.

Since 1
n
Y Y T − λIp is invertible for λ /∈ [γ−, γ+], its determinant is non-zero and we get

0 = det

(
Ip +

λµ

1 + µ

(
1

n
Y Y T − λIp

)−1

· uuT
)
.



This is the determinant of a (p× p)-matrix which we cannot control directly; but we can

actually rewrite it as determinant of a (1× 1)-matrix, which is accessible. Note that, for

A := 1
n
Y Y T−λIp, A−1u ∈ Rp×1 and uT ∈ R1×p, thus A−1uuT ∈ Rp×p but uTA−1u ∈ R1×1.

(To be continued...)

Lemma 5.2 (Sylvester’s Determinant Identity). Consider A ∈ Rp×n and B ∈ Rn×p. Then

det(Ip + AB) = det(In +BA).

Proof. Use “Schur complement”:(
Ip A
B In

)
=

(
Ip 0
B In

)(
Ip 0
0 In −BA

)(
Ip A
0 In

)
=

(
Ip A
0 In

)(
Ip − AB 0

0 In

)(
Ip 0
B In

)
.

Since the first and last factor are triangular matrices they have determinant 1, and we

have

det(In −BA) = det(Ip) · det(In −BA)

= det

(
Ip 0
0 In −BA

)
= det

(
Ip A
B In

)
= det

(
Ip − AB 0

0 In

)
= det(Ip − AB) · det(In)

= det(Ip − AB).

Proof of Theorem 5.1, part two. Continuing the proof, we have

0 = det

(
Ip +

λµ

1 + µ

(
1

n
Y Y T − λIp

)−1

uuT

)

5.2
= det

(
1 +

λµ

1 + µ
uT
(
1

n
Y Y T − λIp

)−1

u

)

= 1 +
λµ

1 + µ
uT
(
1

n
Y Y T − λIp

)−1

u

= 1 +
λµ

1 + µ

〈
u,

(
1

n
Y Y T − λIp

)−1

u

〉

≈ 1 +
λµ

1 + µ
S(λ),



where S(λ) is the Stieltjes transform of the Marchenko-Pastur distribution of 1
n
Y Y T . To

justify the last step, recall that in the proof of Theorem 4.2 we have seen that

tr

((
1

n
Y Y T − λIp

)−1
)

≈ S(λ);

but actually for an orthonormal basis u1, . . . , up we have

tr

((
1

n
Y Y T − λIp

)−1
)

=
1

p

p∑
k=1

〈
uk,

(
1

n
Y Y T − λIp

)−1

uk

〉

=

〈
u1,

(
1

n
Y Y T − λIp

)−1

u1

〉
,

since the summands are all the same due to rotational symmetry. But then we can choose

any unit vector u as part u1 = u of an orthonormal basis.

The ≈ sign has of course to be understood as saying that with high probability one is

close to an equality. In the following we will ignore these technicalities and just write “=”.

Thus our condition on λ is

0 = 1 +
λµ

1 + µ
S(λ),

i.e.,

λS(λ) = −1 + µ

µ
.

For a given µ, we have to check whether this has a solution λ with λ > γ+. Recall that

S(λ) satisfies the equation

1 + λS(λ) =
S(λ)

1 + γS(λ)
=

1
1

S(λ)
+ γ

or

1 + γS(λ) + λS(λ) + λγS(λ)2 = S(λ),

which is equivalent to

−S(λ)
(
1− λ− γλS(λ)

)
= −γS(λ)− 1

and

1− λ− γλS(λ) =
1

S(λ)
+ γ.

This leads to

1 + λS(λ) =
1

1− λ− γλS(λ)
.



With λS(λ) = −1+µ
µ

we get

− 1

µ
= 1− 1 + µ

µ
=

1

1− λ− γ 1+µ
µ

,

which implies

1− λ− γ
1 + µ

µ
= −µ

and finally

λ = 1 + µ+ γ
1 + µ

µ
.



6. Neural Networks, Double Descent, and Linear
Regression

6.1. Neural Networks

Neural networks are special functions, say f : Rp → R, of the form

y = f(x) = wσWL . . .W2σ(W1x),

where

• x ∈ Rp is the input vector,

• w ∈ R1×m is a row vector,

• W2, . . . ,WL ∈ Rm×m are matrices,

• W1 ∈ Rm×p is a matrix, and

• σ : R → R is a non-linear function that is applied entry-wise on vectors and matrices.

For multiple input vectors x1, . . . , xn, set

X :=
(
x1 . . . xn

)
∈ Rp×n and Y :=

(
y1 . . . yn

)
∈ R1×n,

where yk := f(xk) for all k = 1, . . . , n, then

Y = f(X) = wσWL . . .W2σ(W1X).

Two important questions on such neural networks are the following.



(1) Given such a neural network, what can we say about the relation between the input

X and the output Y = f(X); in particular, we are looking for probabilistic and

asymptotic statements (if the width of the hidden layers goes to infinity)? The main

rigorous statements of this form are saying that in this infinite width limit neural

networks with random weights and biases converge to Gaussian processes. We will

not say much on these aspects, but refer to the literature, like, e.g., [Han21, Yan19].

(2) How can we construct a neural network (i.e., choose its parameters) such that it

approximates f(X) = Y well for a given training set (X, Y ), but also generalizes to

unseen data. That’s the question which we will address in the following.

6.2. The modern double descent picture

One has to note that neural networks challenge actually our classical ideas about learning;

overparameterization (i.e., having much more parameters to adjust our functions than the

number of data we want to learn) is considered bad classically.

But neural networks seem to indicate “the more the better” and in the last few years,

the above picture has been replaced by the following “double descent” curve, see, e.g.,

[Bel21, MM22].



A kind of idea about this can be gotten already from the simplest neural network,

without hidden layer and without a non-linearity.

Here, y = f(x) = wx and Y = wX, where (X, Y ) are given and we look for the “best”

w to model this. This is then nothing else but the classical problem of “linear regression”.

Assume we have a linear relation, but have noise in the measurements, thus we see

Ŷ = wX +N,

where N is some Gaussian noise. We want to find the best ŵ such that we have

Ŷ = ŵX.

Note that X ∈ Rp×n, ŵ ∈ R1×p and Ŷ ∈ R1×n, i.e. we have a system of n linear equations

for p variables. This is under-determined for n < p and over-determined for n > p. These

two cases will correspond to the two regimes in our double descent picture.

6.3. Linear regression: over-determined case

In the case n > p, Ŷ = ŵX typically will have no solution and we approximate the non-

linear5 relation between Ŷ and X by the method of least squares: instead of Ŷ = ŵX we
5The non-linearity here is created by the noise.



try to solve

Ŷ XT = ŵXXT ;

this is the “normal equation”, characterizing a ŵ such that ∥Ŷ−ŵX∥ is minimal. Typically,

i.e., if rank(X) = p < n, the matrix XXT ∈ Rp×p is invertible, thus

ŵ = Ŷ XT (XXT )−1.

Thus we have made the error

∥w − ŵ∥2 = ∥w − Ŷ︸︷︷︸
=wX+N

XT (XXT )−1∥2

= ∥w − wXXT (XXT )−1︸ ︷︷ ︸
=1

−NXT (XXT )−1∥2

= ∥NXT (XXT )−1∥2

= NXT (XXT )−1(XXT )−1XNT ,

since ∥a∥2 = aa∗ for all a ∈ R1×p. Assume now that N ∼ N(0, σ2In) is a Gaussian noise

and average the error over N :

EN
[
∥w − ŵ∥2

]
= EN

[
NXT (XXT )−2XNT

]
4.6
= σ2 · Tr

(
XT (XXT )−2X

)
= σ2 · Tr

(
XXT (XXT )−2

)
= σ2 · Tr

(
(XXT )−1

)
= σ2 p

n
tr

((
1

n
XXT

)−1
)
.

Assume now that X is a standard Gaussian random matrix, then Σ̂ = 1
n
XXT is a Wishart

matrix and the above error converges for n, p = γn→ ∞ to σ2γS(0), where

S(z) =

∫
1

t− z
ψMP dt

is the Stieltjes transform of the Marchenko-Pastur distribution. We know from the proof

of Theorem 4.2 that S(z) satisfies the equation

1 + zS(z) =
S(z)

1 + γS(z)
,

i.e., for z = 0 (note that S has a continuous extension to R for γ < 1)

1 =
S(0)

1 + γS(0)
, so S(0) =

1

1− γ



and thus

E
[
∥w − ŵ∥2

]
= σ2 γ

1− γ
.

6.4. Linear regression: under-determined case

In the case n < p, Ŷ = ŵX typically will have infinitely many solutions and we will

choose the one with the smallest norm. This is actually given by the same formula as

before if we replace the inverse by the pseudo-inverse

ŵ = Ŷ XT (XXT )+ = Ŷ (XTX)−1XT ,

where the last equation holds only if rank(X) = n < p. This ŵ then is a solution of

Ŷ = ŵX and has smallest norm among all (infinitely many) solutions. Let us check this

general linear algebra fact in the following lemma.

Lemma 6.1. Let A ∈ Rn×p with n < p and consider the system of linear equations

Ax = y

for given y ∈ Rn×1. Assume that A has full rank, rank(A) = n, i.e. AAT ∈ Rn×n is

invertible. Then

x0 := AT (AAT )−1y

is a solution of Ax = y and it has smallest norm among all solutions of Ax = y.

Proof. (i) We have

Ax0 = AAT (AAT )−1y = y.

(ii) Assume that Ax = y, then (since A(x− x0) = Ax− Ax0 = y − y = 0)

⟨x− x0, x0⟩ =
〈
x− x0, A

T (AAT )−1y
〉
=
〈
A(x− x0), (AA

T )−1y
〉
= 0,

i.e. x− x0⊥x0. Thus

∥x∥2 = ⟨x, x⟩ = ⟨x− x0 + x0, x− x0 + x0⟩

= ⟨x− x0, x− x0⟩+ ⟨x0, x0⟩+ 2⟨x− x0, x0⟩

= ∥x− x0∥2︸ ︷︷ ︸
≥0

+∥x0∥2

≥ ∥x0∥2

with equality if and only if x = x0.



Now back to Ŷ = ŵX, i.e. XT ŵT = Ŷ T . Note that if we let A = XT and x = ŵT in

Lemma 6.1, then our minimal solution is

ŵ = Ŷ (XTX)−1XT .

This ŵ exactly matches the given noisy data Ŷ = wX + N . Let us again consider the

error

∥w − ŵ∥2 = ∥w − Ŷ (XTX)−1XT∥2 = ∥w − wX(XTX)−1XT −N(XTX)−1XT∥2.

Note that

[w − wX(XTX)−1XT ](N(XTX)−1XT )T = w[Ip −X(XTX)−1XT ]X(XTX)−1NT

= w[X −X(XTX)−1XTX](XTX)−1NT

= w[X −X](XTX)−1NT = 0,

i.e. w − wX(XTX)−1XT )⊥N(XTX)−1XT . Thus

∥w − ŵ∥2 = ∥w − wX(XTX)−1XT −N(XTX)−1XT∥2

= ∥w − wX(XTX)−1XT∥2︸ ︷︷ ︸
“bias term”

+ ∥N(XTX)−1XT∥2︸ ︷︷ ︸
“variance term”

.

Consider first the variance term:

EN
[
∥N(XTX)−1XT∥2

]
= EN

[
N(XTX)−1XTX(XTX)−1NT

]
= σ2Tr

(
(XTX)−1XTX(XTX)−1

)
= σ2Tr

(
(XTX)−1

)
= σ2n

p
tr

((
1

p
XTX

)−1
)
.

This is the same as in the over-determined case, but the roles of p and n are exchanged,

thus γ is replaced by 1
γ

and the variance term converges for p = γn→ ∞ to

σ2

1
γ

1− 1
γ

= σ2 1

γ − 1
.

Now consider the bias term:

∥w − wX(XTX)−1XT∥2 = (w − wX(XTX)−1XT )(w − wX(XTX)−1XT )T

= (w − wX(XTX)−1XT )(wT −X(XTX)−1XTwT )

= wwT − wX(XTX)−1XTwT

= ∥w∥2
(
1− w

∥w∥
X(XTX)−1XT w

T

∥w∥

)
.



Note that
w

∥w∥
X(XTX)−1XT w

T

∥w∥
= vX(XTX)−1XTvT

for all ∥v∥ = 1, because of rotational symmetry. Thus

w

∥w∥
X(XTX)−1XT w

T

∥w∥
=

1

p
Tr(X(XTX)−1XT )

=
1

p
Tr(XTX(XTX)−1)

=
1

p
Tr(In)

=
n

p
.

Continuing, we have

∥w − wX(XTX)−1XT∥2 = ∥w∥2
(
1− w

∥w∥
X(XTX)−1XT w

T

∥w∥

)
= ∥w∥2

(
1− n

p

)
n→∞−−−→
p=γn

∥w∥2
(
1− 1

γ

)
.

6.5. Double descent for linear regression

Combining all the results, we get

E
[
∥w − ŵ∥2

]
=


σ2 γ

1− γ
, γ < 1,

σ2 1

γ − 1
+ ∥w∥2

(
1− 1

γ

)
, γ > 1.



6.6. Adding layers and non-linearities

Consider now a more interesting neural network by adding one layer and non-linearities.

So we have now f(x) = wσWx and f(X) = wσWX. If we don’t learn W , but only w,

then this is still linear regression, but not on X, but on the “random features” F := σWX

and the performance depends on the eigenvalue distribution of FF T .

So we should now address the question whether we can understand the (combined)

effect of

• multiplying two random matrices and

• applying non-linear functions entry-wise to random matrices

on the eigenvalue distribution? The first problem is part of classical random matrix

theory, the second problem, in combination with the first one, is new and gives rise to

“non-linear random matrix theory”. Let us be a bit more precise on this.

(i) Consider F = WX, where both W and X are Gaussian random matrices (thus

WW T and XXT are Wishart matrices), independent from each other. Then FF T =

WXXTW T has the same distribution as a Wishart matrix Y Y T , where Y is the

data matrix of vectors y = Wx where x ∼ N(0, Ip), so y ∼ N(0,WW T ). Put

Σ := WW T ∈ Rm×m. Then one can determine a fixed-point equation for the Stieltjes

transform of FF T ; similar (but more general) as in Exercise 4 of Assignment 4.

(ii) Consider F = σX. Then the entries of F are still i.i.d., but their common distribu-

tion is not Gaussian any more, but the push-forward of Gauss under σ. However,

for the validity of the Marchenko-Pastur law Theorem 4.2 one does not need the

Gaussian distribution, the essential input is independence. Thus the distribution of

F is still Marchenko-Pastur.



Both (i) and (ii) are thus within the realm of classical random matrix theory, but if we

consider now the combination (iii) F = σWX, then we have to move into new “non-linear”

random matrix territory! We will address this in the next section.



7. Non-Linear Random Matrix Models: Resolvent
Method and Cumulant Expansions

7.1. Distribution of the random features model

We consider our “random features” model

and we want to understand the distribution of the features f – in particular the eigenvalues

of their covariance estimator FF T – in the asymptotic regime where all sizes go, in a

proportional way, to ∞: p, n,m→ ∞ such that m
n
→ γ and p

m
→ γ̃.

We will try to understand the statement as well as the idea and the tools of the proof

of the following theorem. For the proof we will follow the ideas from [PS21].

Theorem 7.1 (Pennington and Worah [PW17], Benigni and Peché [BP21]). Let X ∈

Rp×n and W ∈ Rm×p be standard Gaussian random matrices and σ : R → R be a

sufficiently nice function (in particular, all derivatives have to exist), which is centered

with respect to the Gaussian distribution, i.e.

∫
R
σ(t)

1√
2π

exp

(
−t

2

2

)
dt = 0.

We put

F := σ

(
1
√
p
WX

)
∈ Rm×n and M :=

1

n
FF T ∈ Rm×m.



Then, in the limit p, n,m → ∞ such that m
n
→ γ and p

m
→ γ̃, the Stieltjes transform of

M converges to a limit

S(z) = lim
m
n
→γ

p
m
→γ̃

E

[
tr

((
1

n
FF T − zIm

)−1
)]

and this S(z) satisfies the following quartic equation:

1 + zS(z) = θ1S(z)
(
1− γ

(
1 + zS(z)

))
− θ2
γ̃

(
1 + zS(z)

)(
1− γ

(
1 + zS(z)

))
+
θ2(θ1 − θ2)

γ̃
S(z)2

(
1− γ

(
1 + zS(z)

))2
,

where

θ1 = θ1(σ) :=

∫
R
σ(t)2

1√
2π

exp

(
−t

2

2

)
dt

and

θ2 = θ2(σ) :=

(∫
R
σ′(t)

1√
2π

exp

(
−t

2

2

)
dt

)2

.

Remark. (1) If θ2 = 0 and θ1 = 1, this reduces to

1 + zS(z) = S(z)
(
1− γ

(
1 + zS(z)

))
,

which is the equation for Marchenko-Pastur, compare our proof of Theorem 4.2.

Thus in this case F =̂Z, where Z ∈ Rm×n is a standard Gaussian random matrix.

(2) If θ1 = θ2 and θ2 = 1, this reduces to the cubic equation

1 + zS(z) = S(z)
(
1− γ

(
1 + zS(z)

))(
1− 1

γ̃

(
1 + zS(z)

))
.

Note that θ1 = θ2 is given for σ(t) =
√
θ2 · t,6 thus this special non-linear case

corresponds to the linear situation F =̂
√
θ2√
p
WX.

(3) It is not obvious from the general form of the equation, but one can show (and we will

come back to this in Section 7.6) that in general one actually has the “independent”

combination of those two special cases, i.e.

F =̂

√
θ2√
p
WX +

√
θ1 − θ2Z.

Thus the effect of the non-linearity is to produce some additional noise.
6Actually, θ1 = θ2 can only happen for linear σ, see Assignment 5.



7.2. Proof of Marchenko-Pastur law via Stein’s identity

It is not clear how to generalize our proof of Marchenko-Pastur to the situation at hand.

Thus, in the following we will first give another proof of the Marchenko-Pastur law, which

has the potential for generalizations. This proof relies on Stein’s identity, and we will see

later that we can extend this to a cumulant expansion, which allows us then to also deal

with products and non-linearities.

Second proof of the Marchenko-Pastur law, part one. Let X =
(
xij
)
∈ Rp×n be our stan-

dard Gaussian random matrix, then we want to calculate, in the limit p, n → ∞ with
p
n
→ γ, the Stieltjes transform of A = 1

n
XXT , given by

S(z) = E
[
tr
(
(A− zIp)

−1)] = E

[
tr

((
1

n
XXT − zIp

)−1
)]

.

We put

R(z) := (A− zIp)
−1, thus S(z) = E

[
tr
(
R(z)

)]
.

We have (A − zIp)R(z) = Ip, i.e. Ip + zR(z) = AR(z). Applying E[tr(·)] to both sides,

we get

1 + zS(z) = E
[
tr
(
AR(z)

)]
=

1

np
E
[
Tr
(
XXTR(z)

)]
=

1

np

∑
i=1,...,p
j=1,...,n

E
[
xij
[
XTR(z)

]
ji

]
,

where XTR(z) is a function of all xkl. Thus we need a formula to deal with such ex-

pectations. We will first present this “Stein’s identity” and then later continue with our

proof.

Lemma 7.2 (Stein’s Identity). Let t1, . . . , tk be independent standard Gaussian random

variables and h : Rk → R a nice function (like: continuously differentiable such that all

partial derivatives are of polynomial growth). Then we have for i = 1, . . . , k:

E
[
tih(t1, . . . , tk)

]
= E

[
∂ih(t1, . . . , tk)

]
,

where ∂i = ∂
∂ti

is the partial derivative with respect to the i-th variable ti.



Proof. The main argument happens for k = 1; it is just partial integration:

E
[
th(t)

]
=

1√
2π

∫
th(t) exp

(
−t

2

2

)
dt

=
1√
2π

∫
h(t) · t exp

(
−t

2

2

)
︸ ︷︷ ︸
=
(
− exp

(
− t2

2

))′

dt

=
1√
2π

∫
h′(t) exp

(
−t

2

2

)
dt− 1√

2π

[
h(t) exp

(
−t

2

2

)]+∞

−∞

=
1√
2π

∫
h′(t) exp

(
−t

2

2

)
dt

= E[h′(t)]

since the last summand in the partial integration is zero by the assumption on h. For

general k, just do partial integration for the i-th coordinate.

Second proof of the Marchenko-Pastur law, part two. In our setting, this now gives

E
[
xij
[
XTR(z)

]
ji

]
= E

[
∂ij
[
XTR(z)

]
ji

]
= E

[
∂ij

p∑
k=1

[
XT
]
jk

[
R(z)

]
ki

]

= E

[
∂ij

p∑
k=1

xkj
[
R(z)

]
ki

]

= E

[
p∑

k=1

∂xkj
∂xij

·
[
R(z)

]
ki
+ xkj

∂
[
R(z)

]
ki

∂xij

]

= E

[
p∑

k=1

δik
[
R(z)

]
ki
+ xkj

∂
[
R(z)

]
ki

∂xij

]

= E
[[
R(z)

]
ii

]
+

p∑
k=1

E

[
xkj

∂
[
R(z)

]
ki

∂xij

]

From Assigment 5 we know

∂
[
R(z)

]
kl

∂xij
= − 1

n

([
R(z)

]
ki
·
[
XTR(z)

]
jl
+
[
R(z)X

]
kj

[
R(z)

]
il

)
,

thus, by setting l = i, we get

E

[
xkj

∂
[
R(z)

]
ki

∂xij

]
= − 1

n
E
[
xkj
[
R(z)

]
ki

[
XTR(z)

]
ji
+ xkj

[
R(z)X

]
kj

[
R(z)

]
ii

]



and therefore

1 + zS(z) =
1

np

∑
i=1,...,p
j=1,...,n

E
[
xij
[
XTR(z)

]
ji

]

=
1

np

∑
i=1,...,p
j=1,...,n

(
E
[[
R(z)

]
ii

]
+

p∑
k=1

E

[
xkj

∂
[
R(z)

]
ki

∂xij

])

=
1

np

∑
i=1,...,p
j=1,...,n

E
[[
R(z)

]
ii

]
− 1

n2p

∑
i=1,...,p
j=1,...,n
k=1,...,p

E
[
xkj
[
R(z)

]
ki

[
XTR(z)

]
ji

]

− 1

n2p

∑
i=1,...,p
j=1,...,n
k=1,...,p

E
[
xkj
[
R(z)X

]
kj

[
R(z)

]
ii

]
.

Consider the summands separately:

(1) For the first summand, we have

1

np

∑
i=1,...,p
j=1,...,n

E
[[
R(z)

]
ii

]
=

1

np

n∑
j=1

E

[
p∑
i=1

[
R(z)

]
ii

]
=

1

np
· n · E

[
Tr
(
R(z)

)]

=
1

p
E
[
p tr
(
R(z)

)]
= E

[
tr
(
R(z)

)]
= S(z).

(2) For the second summand, we have (by the cyclic property of the trace)
1

n2p

∑
i=1,...,p
j=1,...,n
k=1,...,p

E
[
xkj
[
R(z)

]
ki

[
XTR(z)

]
ji

]

=
1

n2p

∑
i=1,...,p
j=1,...,n
k=1,...,p

E
[[
XT
]
jk

[
R(z)

]
ki

[
R(z)TX

]
ij

]

=
1

n2p

n∑
j=1

E
[[
XTR(z)R(z)TX

]
jj

]
=

1

n2p
E
[
Tr
(
XTR(z)R(z)TX

)]
=

1

n2p
E
[
Tr
(
XXTR(z)R(z)T

)]
=

1

n
E

[
tr

(
XXT

n
R(z)R(z)T

)]
n→∞−−−→ 0.



(3) For the third summand, we have (again by the cyclic property of the trace)

1

n2p

∑
i=1,...,p
j=1,...,n
k=1,...,p

E
[
xkj
[
R(z)X

]
kj

[
R(z)

]
ii

]

=
1

n2p
E

[
p∑

k=1

n∑
j=1

xkj
[
R(z)X

]
kj

p∑
i=1

[
R(z)

]
ii

]

=
1

n2p
E

[
p∑

k=1

n∑
j=1

xkj
[
R(z)X

]
kj
Tr
(
R(z)

)]

= E

[
tr
(
R(z)

) 1
n2

p∑
k=1

n∑
j=1

[
XT
]
jk

[
R(z)X

]
kj

]

= E

[
tr
(
R(z)

) 1
n2

n∑
j=1

[
XTR(z)X

]
jj

]

= E

[
tr
(
R(z)

) 1
n2

Tr
(
XTR(z)X

)]
= E

[
tr
(
R(z)

) 1
n2

Tr
(
XXTR(z)

)]

= E

[
tr
(
R(z)

)p
n
tr

(
XXT

n
R(z)

)]

≈ E
[
tr
(
R(z)

)]
· p
n
E

[
tr

(
XXT

n
R(z)

)]
= S(z) · γ · E

[
tr
(
AR(z)

)]
,

Note that we need concentration to asymptotically factorize the expectation of a

product! Remember that we have AR(z) = Ip + zR(z), so

E
[
tr
(
AR(z)

)]
= E

[
tr
(
Ip + zR(z)

)]
= 1 + zS(z),

so
1

n2p

∑
i=1,...,p
j=1,...,n
k=1,...,p

E
[
xkj
[
R(z)X

]
kj

[
R(z)

]
ii

]
≈ S(z) · γ ·

(
1 + zS(z)

)
.

Putting everything together, we get in the limit

1 + zS(z) = S(z)− γS(z) ·
(
1 + zS(z)

)
,



i.e.

γzS(z)2 + (z + γ − 1)S(z) + 1 = 0.

This is the same equation as we derived in the proof of the Marchenko-Pastur law (cf.

Theorem 4.2).

7.3. Extension of Stein’s identity to cumulant expansion

Now we want to extend this approach from X to F = σ
(

1√
p
WX

)
∈ Rm×n. So we start

as before, with

S(z) = E

[
tr

((
1

n
FF T − zIm

)−1
)]

= E
[
tr
(
R(z)

)]
and the equation

1 + zS(z) = E

[
tr

(
1

n
FF TR(z)

)]
=

1

nm
E
[
Tr
(
FF TR(z)

)]
=

1

nm

∑
i=1,...,m
j=1,...,n

E
[
fij
[
F TR(z)

]
ji

]
,

where F =
(
fij
)

and
[
F TR(z)

]
ji

is a function of all fkl.

The problem is now that the fij are neither Gaussian nor (and this is more serious)

independent any more!

So we have to face the question: Do we still have a version of Stein’s identity for such

a general case?

Recall the one-dimensional case of Stein’s identity: If t is a standard Gaussian random

variable, then

E
[
th(t)

]
= E

[
h′(t)

]
.

For general distributions, one can try to

• keep the RHS and change the LHS; this leads to the theory of score functions, which

is an important subject, but not really relevant here;

• or keep the LHS and change the RHS; this leads to cumulant expansions and is

what we need!



In order to get an idea what E
[
th(t)

]
could be in general, we will consider it for special

functions of the form hs(t) = exp(its) and then get the general case by Fourier decompo-

sition. Defining constants κl via

log
(
E
[
exp(its)

])
=:

∞∑
l=1

κℓ
ℓ!
(is)ℓ,

we have

E
[
ths(t)

]
= E

[
t exp(its)

]
= E

[
−i

d

ds
exp(its)

]
= −i

(
d

ds
log
(
E
[
exp(its)

]))
· E
[
exp(its)

]
= −i

∞∑
ℓ=1

κℓ
(ℓ− 1)!

i(is)ℓ−1 · E
[
exp(its)

]

= E

[
∞∑
ℓ=0

κℓ+1

ℓ!
(is)ℓ · exp(its)

]

= E

[
∞∑
ℓ=0

κℓ+1

ℓ!

dℓ exp(its)

dtℓ

]

= E

[
∞∑
ℓ=0

κℓ+1

ℓ!
h(ℓ)s (t)

]
.

By Fourier decomposition, this then goes over to “arbitrary functions”:

Lemma 7.3. Let t be a random variable such that all of its moments exist. Then we

define its “cumulants” κℓ by

log
(
E
[
exp(its)

])
=

∞∑
ℓ=1

κℓ
ℓ!
(is)ℓ,

and for a smooth function h : R → R we then have

E
[
th(t)

]
=

∞∑
ℓ=0

κℓ+1

ℓ!
E
[
h(l)(t)

]
.

Remark. Note that this is consistent with Stein’s identity. If t is a standard Gaussian

random variable, then we have

E
[
exp(its)

]
= exp

(
−s

2

2

)
,



thus

log
(
E
[
exp(its)

])
= −s

2

2
,

which means that all κℓ are zero except κ2 = 1; but then Lemma 7.3 reduces to

E
[
th(t)

]
=
κ2
1!
E
[
h′(t)

]
= E

[
h′(t)

]
.

We now need the multivariate version of all this. This works in the same way.

Definition 7.4. Let t1, . . . , tk be a collection of random variables. Their characteristic

function (i.e. the Fourier transform of their density function) is

E
[
exp
(
i(t1s1 + . . .+ tksk)

)]
=

∫
Rk

exp
(
i(t1s1 + . . .+ tksk)

)
ψ(t1, . . . , tk) dt1 . . . dtk

and the cumulants of t1, . . . , tk are defined as coefficients in the power series expansion of

the logarithm of the characteristic function:

log
(
E
[
exp
(
i(t1s1 + . . .+ tksk)

)])
=

∞∑
ℓ=0

κℓ
ℓ!
(is)ℓ,

where ℓ = (ℓ1, . . . , ℓk) is a multi-index, and we use the usual multi-index conventions, like

ℓ! = ℓ1! · · · ℓk!.

The κ are actually multi-linear mappings in the random variables, i.e. the coefficient

of si1 · · · sim is κ(ti1 , . . . , tim). With this definition one also has the following multi-

dimensional version of Lemma 7.3:

Proposition 7.5. Let t1, . . . , tk be a collection of random variables and κ their cumulants.

For smooth functions h : Rk → R we then have

E
[
tih(t1, . . . , tk)

]
=
∑
ℓ≥0

k∑
i1,...,iℓ=1

κ(ti, ti1 , . . . , tiℓ)

ℓ!
E
[
∂i1 . . . ∂iℓh(t1, . . . , tk)

]
.

Remark. Note that the coefficients of the characteristic function power series expansion

are essentially the moments of our random variables; the coefficients in the logarithm of

the characteristic function are by definition the cumulants. This means that moments

and cumulants are functions of each other. The combinatorial nature of this relation is

revealed by Proposition 7.5, if we use monomials for h.



Example. (1) For h = 1, only ℓ = 0 contributes, so

E[ti] = E[ti · 1] =
κ(ti)

0!
E[1]︸︷︷︸
=1

= κ(ti).

(2) For h(t1, . . . , tk) = tj we have

E[titj] = κ(ti) · E[tj]︸ ︷︷ ︸
from ℓ=0

+
k∑

i1=1

κ(ti, ti1)E[∂i1tj]︸ ︷︷ ︸
from ℓ=1

= κ(ti) · κ(tj) +
k∑

i1=1

κ(ti, ti1)δi1j

= κ(ti) · κ(tj) + κ(ti, tj),

thus

E[titj] = κ(ti, tj)︸ ︷︷ ︸+κ(ti)κ(tj)︸ ︷︷ ︸,
where the two summands correspond to the two partitions of {ti, tj} drawn below

them.

(3) For h(t1, . . . , tk) = tjtr we have

E[titjtr] = κ(ti)E[tjtr] +
k∑

i1=1

κ(ti, ti1)E[∂i1tjtr] +
k∑

i1,i2=1

1

2
κ(ti, ti1 , ti2)E[∂i1∂i2tjtr]

= κ(ti)E[tjtr] + κ(ti, tj)E[tr] + κ(ti, tr)E[tj] +
1

2

(
κ(ti, tj, tr) + κ(ti, tr, tj)

)
= κ(ti)E[tjtr] + κ(ti, tj)E[tr] + κ(ti, tr)E[tj] + κ(ti, tj, tr)

= κ(ti, tj, tr) + κ(ti)κ(tj, tr) + κ(ti, tj)κ(tr) + κ(ti, tr)κ(tj) + κ(ti)κ(tj)κ(tr)

(corresponding respectively to the partitions , , , , and of

{ti, tj, tr}), since E[∂i1tjtr] = δi1jtr + δi1rtj and E[∂i1∂i2tjtr] = δi1jδi2r + δi1rδi2j.

This combinatorial relation is true in general.

Theorem 7.6. Moments and cumulants are related by the moment-cumulant formula

E[ti1 · ti2 · . . . · tin ] =
∑

π∈P(n)

κπ(ti1 , ti2 , . . . , tin),

where π = {V1, . . . , Vr} is a partition of the set {1, . . . , n} and

κπ = κV1(. . .)κV2(. . .) · . . . · κVr(. . .),

where the arguments are distributed according to π.



In order to use Proposition 7.5 we need the cumulants of our random feature matrices.

For this we first have to get a more systematic understanding of cumulants.

7.4. Cumulants and their properties and uses

Definition 7.7. (1) We call π = {V1, . . . , Vr} a partition of the set S if

• Vi ̸= ∅ and Vi ⊂ S for all i,

• Vi ∩ Vj = ∅ for all i ̸= j, and

• V1 ∪ . . . ∪ Vr = S.

We call V1, . . . , Vr the blocks of π. Given two elements p, q ∈ S, we write p ∼π q if

p and q belong to the same block of π.

(2) The set of all partitions of S is denoted by P(S). If S = {1, . . . , n}, we write

P(n) = P({1, . . . , n}). Note that P(n) has a “smallest” element

0n := {{1} , . . . , {n}} ∈ P(n)

and a “largest” element

1n := {{1, . . . , n}} ∈ P(n).

Often we use a graphical representation of a partition π like in Figure 4.

1 2 3 4 5 π

{{1, 3} , {2, 4, 5}}

{{1, 4} , {2, 3} , {5}}

{{1} , {2} , {3} , {4} , {5}} = 05

{{1, 2, 3, 4, 5}} = 15

Figure 4: Examples for the graphical representation of partitions of five elements.

In the following we consider an algebra A of our random variables, for which the

expectation E : A → R is defined. For example, if we have a collection of random

variables t1, . . . , tr, then

A =

∑
n≥0

r∑
i(1),...,i(n)=1

αi(1),...,i(n)ti(1) · . . . · ti(n) | αi(1),...,i(n) ∈ C





is the collection of all polynomials in the random variables. Given such (A, E) we know all

moments E(t) for all t ∈ A. But for many questions it is better to rewrite the information

about moments into other objects, so-called cumulants.

Notation 7.8. For π = {V1, . . . , Vr} ∈ P(n) and t1, . . . , tn ∈ A we put

Eπ(t1, . . . , tn) =
∏
V ∈π

E(t1, . . . , tn | V ),

where for V = {i1 < i2 < . . . < is}

E(t1, . . . , tn | V ) = E(ti1ti2 · . . . · tis).

More general, if we have a collection (κn)n∈N of n-linear functions

κn : An → R, (t1, . . . , tn) 7→ κn(t1, . . . , tn),

then we define in the same way their multiplicative extension to all P(n) by

κπ(t1, . . . , tn) =
∏
V ∈π

κ#V (t1, . . . , tn | V ),

where for V = {i1 < i2 < . . . < is}

κ(t1, . . . , tn | V ) = κs(ti1 , ti2 , . . . , tis).

Definition 7.9. Given (A, E) we define the cumulants of the random variables in A as

κn : An → R by the moment-cumulant formulas: for all n ∈ N and all t1, . . . , tn ∈ A

E(t1 · . . . · tn) =
∑

π∈P(n)

κπ(t1, . . . , tn). (MCF)

These MCF define the κn’s recursively as n-linear functionals.

Example 7.10. (1) n = 1: we have E(t1) = κ1(t1) and thus κ1(t1) = E(t1), corre-

sponding to the partition of {t1}.

(2) n = 2: we have

t1 t2

E(t1t2) = κ2(t1, t2)

+ κ1(t1)κ1(t2)

and thus

κ2(t1, t2) = E(t1t2)− κ1(t1)κ1(t2) = E(t1t2)− E(t1)E(t2),

which is the covariance of (t1, t2).



(3) n = 3: we have

t1 t2 t3

E(t1t2t3) = κ3(t1, t2, t3)

+ κ2(t1, t2)κ1(t3)

+ κ2(t1, t3)κ1(t2)

+ κ2(t2, t3)κ1(t1)

+ κ1(t1)κ1(t2)κ1(t3),

so

κ3(t1, t2, t3)

= E(t1t2t3)− κ2(t1, t2)κ1(t3)− . . .

= E(t1t2t3)−
(
E(t1t2)− E(t1)E(t2)

)
E(t3)− . . .

= E(t1t2t3)︸ ︷︷ ︸−E(t1t2)E(t3)︸ ︷︷ ︸−E(t1t3)E(t2)︸ ︷︷ ︸−E(t2t3)E(t1)︸ ︷︷ ︸+2E(t1)E(t2)E(t3)︸ ︷︷ ︸
= E (t1, t2, t3)− E (. . .)− E (. . .)− E (. . .) + 2E (. . .).

We see that we can write the cumulants, similar as in the MCF, via a summation over

P(n), but now we get non-trivial coefficients. This rewriting of the MCF is a general

version of the inclusion-exclusion principle, abstractly known as Möbius inversion.

Theorem 7.11. The recursive definition of the cumulants via the MCF is equivalent to

the explicit formula

κn(t1, . . . , tn) =
∑

π∈P(n)

(−1)#π−1(#π − 1)!Eπ(t1, . . . , tn). (CMF)

The relevance of the cumulants is that they characterize independence.

Theorem 7.12. Consider in (A, E) subsets Ti ⊂ A (i ∈ I) of random variables. Then

the following are equivalent:

(i) the Ti are independent;

(ii) mixed cumulants in the Ti vanish: κn(t1, . . . , tn) = 0 whenever tj ∈ Ti(j) and there

exist ℓ, k such that i(ℓ) = i(k).



“Proof”. Let us only check (ii)⇒(i); namely that vanishing of mixed cumulants gives us

factorization of moments. We do this via a telling example; consider E[t1s1t2s2s3t3t4],

where mixed moments in {t1, t2, t3, t4} and {s1, s2, s3} vanish. We have

E[t1s1t2s2s3t3t4] =
∑
π

κπ,

but in the sum partitions like are not included, since blocks are not allowed

to connect a ti with an sj. On the other hand, partitions like are included.

So we have π = πs ∪ πt, where πs is a partition of {s1, s2, s3} and πt is a partition of

{t1, t2, t3, t4}. Continuing the computation, we get

E[t1s1t2s2s3t3t4] =
∑
π

κπ(t1, s1, t2, s2, s3, t4, t5)

=
∑
πs∪πt

κπs∪πt(t1, s1, t2, s2, s3, t4, t5)

=
∑
πs∪πt

κπs(s1, s2, s3)κπt(t1, t2, t3, t4)

=

(∑
πs

κπs(s1, s2, s3)

)(∑
πt

κπt(t1, t2, t3, t4)

)

= E(s1s2s3) · E(t1t2t3t4).

Remark. (1) Note that, as for moments, cumulants do not change under permutation

of arguments; e.g.

κ3(t1, t2, t3) = κ3(t1, t3, t2) = κ3(t2, t1, t3)

etc. since the terms in the CMF are mapped to each other under such permutations.

(2) Cumulants seem to be more complicated than moments. So, why do we want to use

them? Here are some answers to this question.

• Expansions around special situations (like independent Gaussians) are easier

to deal with.

• Almost factorization of moments is hard to work with, almost vanishing (i.e.

smallness) of cumulants is much better for estimates.

(3) In order to be able to make really good use of cumulants, we also have to understand

their multiplicative structure.



Note: the multiplicative structure for moments is easy, they are “associative”, i.e.

E2[t1t2, t3] = E[(t1t2)t3] = E[t1(t2t3)] = E2[t1, t2t3].

This is not true for cumulants:

κ2(t1t2, t3) = E[t1t2t3]− E[t1t2]E[t3] ̸= E[t1t2t3]− E[t1]E[t2t3] = κ2(t1, t2t3),

but there is a replacement here:

κ2(t1t2, t3) = E[t1t2t3]− E[t1t2]E[t3] = κ3(t1, t2, t3) + κ1(t1)κ2(t2, t3) + κ2(t1, t3)κ1(t2).

In particular, we see that from all possible partitions , , , , and ,

only the partitions , , and make a contribution. But these are exactly those

partitions that connect the groups {t1, t2} and {t3} of multiplied variables.

Theorem 7.13. Consider n random variables and multiply them together in m groups

T1 = t1t2 · . . . · ti(1),

T2 = ti(1)+1 · . . . · ti(2),

...

Tm = ti(m−1)+1 · . . . · ti(m),

i.e.

t1t2 · . . . · ti(1)︸ ︷︷ ︸
T1

· ti(1)+1 · . . . · ti(2)︸ ︷︷ ︸
T2

· . . . · ti(m−1)+1 · . . . · ti(m)︸ ︷︷ ︸
Tm

.

Then we have

κm(T1, . . . , Tm) =
∑

π∈P(n)
π connects all the
groups together

κπ(t1, t2, . . . , tn).

Example. (i) No products: if Ti = ti for all i, then

κn(t1, . . . , tn) =
∑

π∈P(n)
π connects all the
groups together

κπ(t1, t2, . . . , tn) = κn(t1, . . . , tn),

since only 1n connects everything.

(ii) One product: if T = t1 · . . . · tn, then

κ1(T ) =
∑

π∈P(n)
π connects all the
groups together

κπ(t1, t2, . . . , tn) =
∑

π∈P(n)

κπ(t1, . . . , tn) = E(t1 · . . . · tn),



since all partitions “connect” the only block. This agrees with

κ1(T ) = E(T ) = E(t1 · . . . · tn).

(iii) We have

κ3(t1t2, t3, t4) = κ4(t1, t2, t3, t4) + κ3(t1, t3, t4)κ1(t2) + . . .

according to the connecting partitions , , , , and .

Note also that our definition of the cumulants via the MCF leads directly to our cumu-

lant expansion from Proposition 7.5 if we choose h as a moment. Namely, take

h(t1, . . . , tk) = tr(1) · . . . · tr(n),

then

E
[
tih(t1, . . . , tk)

]
= E[titr(1) · . . . · tr(n)] =

∑
π∈P(n+1)

κπ(ti, tr(1), . . . , tr(n)).

Now write π = V ∪ (π \V ), where V = {1, j1, . . . , jℓ} is the block of π containing 1. Then

E
[
tih(t1, . . . , tk)

]
=

∑
π∈P(n+1)

κπ(ti, tr(1), . . . , tr(n))

=
∑
ℓ≥0

∑
j1,...,jℓ

∑
π\V

κℓ+1(ti, tr(j1), . . . , tr(jℓ))κπ\V (tr(1), . . . , tr(n) | {1, . . . , n} \ V )

=
∑
ℓ≥0

∑
j1,...,jℓ

κℓ+1(ti, tr(j1), . . . , tr(jℓ))E(tr(1), . . . , tr(n) | {1, . . . , n} \ V )

=
∑
ℓ≥0

∑
i1,...,iℓ

∑
j1,...,jℓ

κℓ+1(ti, ti1 , . . . , tiℓ) · E
[
tr(1) · . . . ·

∂tr(j1)
∂ti1

tr(j1+1) · . . . ·
∂tr(jℓ)
∂tiℓ

· . . . · tr(n)
]

=
∑
ℓ≥0

k∑
i1,...,iℓ=1

κℓ+1(ti, ti1 , . . . , tiℓ) ·
1

ℓ!
E[∂i1 . . . ∂iℓtr(1) . . . tr(n)]

=
∑
ℓ≥0

k∑
i1,...,iℓ=1

κℓ+1(ti, ti1 , . . . , tiℓ)

ℓ!
E[∂i1 . . . ∂iℓh(t1, . . . , tk)].

7.5. Cumulants and Stieltjes transform for the random feature
model

Now let us go back to our random feature model

(fij) = F := σ

(
W
√
p
X

)
.



In order to use our cumulant expansion, we need (asymptotic) information about the

cumulants of {fij}! For W and X this is easy, so let us start with those; then we will

consider

(gij) = G :=
W
√
p
X

and finally (fij) = F = σ(G).

Proposition 7.14. Let X = (xij) ∈ Rp×n be a standard Gaussian random matrix. Then

all cumulants in {xij} are zero with the exception of the second order ones:

κ2(xij, xkℓ) = δikδjℓ.

Proof. Since the xij are independent, mixed cumulants in them vanish by Theorem 7.12,

thus the only possibly non-zero cumulants are κn(xij, xij, . . . , xij). As we have seen in the

Remark after Lemma 7.3, for a Gaussian random variable as xij, only κ2 ̸= 0.

So for X and also for W the cumulants are easy. Now consider

(gij) = G :=
1
√
p
W ·X ∈ Rm×n,

where

gij =

p∑
k=1

1
√
p
wikxkj.

We have:

(i)

κ1(gij) =

p∑
k=1

1
√
p
κ1(wikxkj) =

p∑
k=1

1
√
p

(
κ2(wik, xkj)︸ ︷︷ ︸
=0 (independ.)

+κ1(wik)︸ ︷︷ ︸
=0

κ1(xkj)︸ ︷︷ ︸
=0

)
= 0.

(ii)

κ2(gi1j1 , gi2j2) =
1

p

p∑
k1,k2=1

κ2(wi1k1xk1j1 , wi2k2xk2j2) = δi1i2δj1j2 ·
1

p

p∑
k1=1

1 = δi1i2δj1j2 .



(iii) We have κ3(gi1j1 , gi2j2 , gi3j3) = 0 as well as all odd cumulants since we need an even

number of xij (and of wij) to get a non-vanishing contribution.

(iv)

κ4(gi1j1 , . . . , gi4j4) =
1

p2

p∑
k1,...,k4=1

κ4(wi1k1xk1j1 , . . . , wi4k4xk4j4)

The same arguments lead to the corresponding result for higher cumulants.

Proposition 7.15. Let W ∈ Rm×p and X ∈ Rp×n be independent standard Gaussian

matrices. Then the cumulants of

(gij) = G :=
1
√
p
W ·X ∈ Rm×n

are given by

κr(gi1j1 , gi2j2 , . . . , girjr) =
1

p
r
2
−1

·M,

where M is the number of permutations σ ∈ Sr such that

(iσ(1) jσ(1))(jσ(2) iσ(2))(iσ(3) jσ(3)) . . . . . . . . . (jσ(r) iσ(r))



has a cyclic structure, i.e.

jσ(1) = jσ(2), iσ(2) = iσ(3), jσ(3) = jσ(4), . . . iσ(r) = iσ(1).

Note that M := 0 for r odd.

Let us now use this structure of the cumulants in the cumulant expansion to calculate

S(z) = E

[
tr

((
GGT

n
− zIm

)−1

︸ ︷︷ ︸
=:R(z)

)]

via

1 + zS(z)

=
1

nm

∑
i,j

E
(
gij
[
GTR(z)

]
ji

)

=
1

nm

∑
i,j

∑
ℓ

1

ℓ!
κℓ+1(gij, gp1q1 , gp2q2 , . . . , gpℓqℓ) · E

(
∂p1q1∂p2q2 . . . ∂pℓqℓ

[
GTR(z)

]
ji

)

=
1

nm

∑
r

1

pr−1

∑
i1,...,ir
j1,...,jr

E
(
∂i2j1∂i2j2 . . . ∂i1jr

[
GTR(z)

]
j1i1

)
.

This results in a term for r = 1, which was treated in the second proof of the Marchenko-

Pastur law after Lemma 7.2, and terms for r > 1. For the latter ones, one does two

of the partial integrations and reduces it to versions of 1 + zS(z). After quite a bit of

approximations and technicalities (which we prefer not to do here), this finally gives the

equation

1 + zS(z) = S(z) ·
(
1− γ

(
1 + zS(z)

))
·
(
1− 1

γ̃

(
1 + zS(z)

))
,

which is the special case θ1 = θ2 = 1 of Theorem 7.1.

Now let us finally consider the effect of the non-linearity σ. The main observation is

that the qualitative cumulant structure of G is preserved for F = σ(G) = (fij).

Proposition 7.16. In leading order we have for the cumulants of the {fij}:

(i) only cumulants with a cyclic structure are different from zero,

(ii) odd cumulants are zero,



(iii) we have

κ2(fij, fij) = θ1(σ) =

∫
R
σ(t)2

1√
2π

exp

(
−t

2

2

)
dt,

(iv) and we have

κ2r(fi1j1 , fi2j1 , fi2j2 , . . . , fi1jr) =
1

pr−1
θ2(σ)

r

for disjoint i1, j1, . . . , ir, jr for r > 1, where

θ2(σ) =

(∫
R
σ′(t)

1√
2π

exp

(
−t

2

2

)
dt

)2

.

Proof.(i+ii) This follows because of the cyclicity of the cumulants for the gij; only κ1

might be problematic. For fij = σ(gij), note that

gij =
1
√
p

p∑
k=1

wikxkj.

Since wikxkj are independent for different k and also centered, gij is approximately

Gaussian for large p by the central limit theorem. Thus

κ1(fij) = E
[
σ(gij)

]
≈
∫
σ(t) exp

(
−t

2

2

)
· 1√

2π
dt = 0

by our assumption in Theorem 7.1.

(iii) We have

κ2(fij, fij) = E[f 2
ij]−

2

E[fij]︸ ︷︷ ︸
=0

= E
[
σ(gij)

2
]
=

∫
σ(t)2

1√
2π

exp

(
−t

2

2

)
dt = θ1(σ).

(iv) Check for monomials and extend then by linearity and continuity.



and thus

κ2r
(
σ(gi1j1), . . . , σ(gi1jr))

)
=

1

pr−1
E
[
σ′(gi1j2)

]2r
=

1

pr−1

(∫
R
σ′(t)

1√
2π

exp

(
−t

2

2

)
dt

)2r

=
1

pr−1
θ2(σ)

r.

Using this in the cumulant expansion yields then after quite some work the claimed

equation for S(z) in Theorem 7.1. For details of the calculations we refer to the paper by

Piccolo and Schröder [PS21].



7.6. The Gaussian equivalence principle for the non-linear
random feature model

Note that getting the final formula for S(z) out of the cumulants might not be easy, but

from Proposition 7.5 on the form of the cumulants it is very easy to see that

F = σ

(
W
√
p
X

)
and F̃ =

√
θ2
W
√
p
X +

√
θ1 − θ2Z = (f̃ij)

have in leading order the same cumulants and thus 1
n
FF T and 1

n
F̃ F̃ T have the same

asymptotic eigenvalue distribution. Such statements are known as Gaussian equivalence

principle. Let us check this. We have for r > 1

κ2r(f̃i1j1 , . . . , f̃i1jr) = θr2 · κ2r(gi1j1 , . . . , gi1jr) = θr2 ·
1

pr−1

and

κ2(f̃ij, f̃ij) = θ2 κ2(gij, gij)︸ ︷︷ ︸
=1

+(θ1 − θ2)κ2(zij, zij)︸ ︷︷ ︸
=1

= θ2 + θ1 − θ2 = θ1.

Note that mixed cumulants in WX and Z vanish and that Z only has second-order

cumulants.

Note also that in the asymptotic calculation in the summations over i1, j1, . . . , ir, jr one

can neglect terms where some of the indices are the same. That’s good because we do

not really have much control over terms like κ4(f11, f11, f12, f12).



8. Gradient Descent and Neural Tangent Kernel

Consider our random feature neural network function

Y = f(X) = wσ(W1X),

where w ∈ R1×m, W1 ∈ Rm×p, and X ∈ Rp×n. We have a kind of an understanding of

how the statistical properties of X influence the statistical properties of Y if W1 and w

are fixed (e.g., W1 is randomly chosen). But the crux of a neural network is to find w and

W1 through “learning” such that a given set of data Ŷ = f(X) is described best. In the

above we can

(i) fix W1 (deterministically or randomly) and only learn w (linear regression), or

(ii) learn both w and W1 (feature learning).

8.1. Gradient descent for linear regression

For linear regression we have an explicit solution for the best w, but in general this

won’t be the case and we need an algorithmic way for learning. The basic algorithm is

gradient descent. Even for linear regression this has some value. Let us reconsider our

linear regression problem in the over-parameterized (=̂ under-determined) case (compare

Section 6).

Given X ∈ Rp×n and Ŷ ∈ R1×n, we seek ŵ ∈ R1×p such that Ŷ = ŵX in the case

n < p.



In the under-determined case n < p, there are typically (i.e. if rank(X) = n) infinitely

many solutions and the “best” (i.e., the one with the smallest norm) is given by

ŵ = Ŷ (XTX)−1XT . (3)

Since taking inverses of big matrices is usually not a good idea, even here it is better to

have an algorithm to approximate the solution via iterations. Note that Ŷ = ŵX is the

same as ∥Ŷ − ŵX∥2 = 0, i.e. ŵ minimizes

∥Ŷ − wX∥2 = (Ŷ − wX)(Ŷ − wX)T = Ŷ Ŷ T − Ŷ XTwT − wXŶ T + wXXTwT

and

∇w∥Ŷ − wX∥2 = −Ŷ XT · 2 + wXXT · 2.

Let us check the last equation on the gradient by explicit calculations with the components

of the vectors and matrices. We also should decide whether we want to represent the

gradient as a row or as a column vector. We prefer here the first possibility; i.e., we take

∇ as row vector and denote

w =
(
w1 . . . wp

)
, Ŷ XT = a =

(
a1 . . . ap

)
, XXT = A = (aij)

p
i,j=1 = AT .

Then

∇w(wa
T ) = ∇w(aw

T ) = ∇w(a1w1 + . . .+ apwp) =
(
a1 . . . ap

)
= a

and

∇w(wAw
T ) = ∇w

(
p∑

i,j=1

wiaijwj

)

=

( p∑
j=1

(a1jwj + wjaj1) . . .

p∑
j=1

(apjwj + wjajp)

)

=

( p∑
j=1

2wjaj1 . . .

p∑
j=1

2wjajp

)

= 2wA.

So ∇w∥Ŷ − ŵX∥2 = 0 gives the “normal” equation ŵXXT = Ŷ XT , which gives the least

square solution ŵ = Ŷ XT (XXT )−1 in the over-determined case, and the best solution

ŵ = Ŷ XT (XXT )+ = Ŷ (XTX)−1XT in the under-determined case, where A+ is the

pseudo-inverse of A.



From an algorithmic point of view, the gradient gives the direction to improve an

approximation, i.e. starting from some w(0), take

w(t+1) := w(t) − η∇w∥Ŷ − w(t)X∥2 = w(t) − η · 2
(
w(t)XXT − Ŷ XT

)
,

where t ∈ N0 is the time and η is the “step size” or “learning rate”. For η small enough

this algorithm will converge. In the over-determined case, it converges to the least square

solution, in the under-determined case it converges to a solution, but this might not be

the best one. Thus it is advantageous to improve the algorithm by regularization.

Example 8.1. For x =

(
t1
t2

)
∈ R2×1 and w =

(
θ1 θ2

)
∈ R1×2, consider a function

f(x) = wx =
(
θ1 θ2

)(t1
t2

)
= θ1t1 + θ2t2.

Assume we are given that

f

((
0
1

))
= 1, i.e. X =

(
0
1

)
and Ŷ =

(
1
)
.

Thus we want to find the best ŵ =
(
θ̂1 θ̂2

)
such that Ŷ = ŵX, i.e. 1 = θ̂1 · 0 + θ̂2 · 1.

Our solution (3) yields

ŵ = Ŷ (XTX)−1XT = 1 ·
((

0 1
)
·
(
0
1

))−1

·
(
0 1

)
=
(
0 1

)
,

i.e., θ̂1 = 0 and θ̂2 = 1, which is clearly the solution with the smallest norm. But now try

to get a solution via gradient descent, where w(t) =
(
θ
(t)
1 θ

(t)
2

)
and(

θ
(t+1)
1 θ

(t+1)
2

)
= w(t+1) = w(t) − η∇w∥Ŷ − w(t)X∥2

= w(t) − η · 2
(
w(t)

(
0 0
0 1

)
−
(
0 1

))
=
(
θ
(t)
1 θ

(t)
2 − 2η(θ

(t)
2 − 1)

)
,

thus θ(t+1)
1 = θ

(t)
1 and θ

(t+1)
2 − 1 = (θ

(t)
2 − 1)(1 − 2η). Hence, if |1− 2η| < 1, θ2 converges

to the right solution θ̂2 = 1, but θ1 does not change at all. So if we start with θ
(0)
1 ̸= 0,

we will not converge to the solution with the smallest norm.



Remark 8.2 (Ridge Regression). Instead of minimizing

L(w) := ∥Ŷ − wX∥2,

we add a penalty term for large norms, i.e. we want to minimize

Lλ(w) := ∥Ŷ − wX∥2 + λ∥w∥2 for some λ > 0.

The minimizer of this is determined by

0
!
= ∇wLλ(w) = 2(wXXT − Ŷ XT ) + λ∇www

T︸ ︷︷ ︸
=2w

= 2
(
w(XXT + λI)− Ŷ XT

)
,

thus ŵ(XXT+λI) = Ŷ XT . Note that for λ > 0, the matrix XXT+λI is always invertible

even if XXT is not invertible, since XXT is positive semi-definite. So we have a unique

solution

ŵ = Ŷ XT (XXT + λI)−1,

which

• does not interpolate exactly anymore, but we allow small (depending on λ) errors,

and

• is “nice” (has small norm, or more general some good smoothness properties).

Gradient descent with the “ridged” gradient converges to this solution. Note also that

lim
λ↘0

XT (XXT + λI)−1 = X+,

the pseudo-inverse of X, and the ridge regression solution converges for λ ↘ 0 to the

regression solution.

Example 8.3 (Ridge regression for Example 8.1). The unique solution ŵλ for λ is

ŵλ = Ŷ XT (XXT + λI)−1 = 1 ·
(
0 1

)
·
((

0 0
0 1

)
+

(
λ 0
0 λ

))−1

=
(
0 1

)
·
(

1
λ

0
0 1

1+λ

)
=
(
0 1

1+λ

) λ↘0−−→
(
0 1

)
= ŵ.

Gradient descent iteration gives now

w
(t+1)
λ = w

(t)
λ − 2η

((
0 θ

(t)
2

)
+ λw

(t)
λ −

(
0 1

))
,



so

θ
(t+1)
1 = θ

(t)
1 − 2ηλθ

(t)]
1 = θ

(t)
1 (1− 2ηλ)

and

θ
(t+1)
2 = θ

(t)
2 − 2η

(
θ
(t)]
2 (1 + λ)− 1

)
.

In particular, we have

θ
(t)
1 → 0 if |1− 2ηλ| < 1

and

θ
(t)
2 → 1

1 + λ
if |1− 2η(1 + λ)| < 1,

since

θ
(t+1)
2 − 1

1 + λ
=

(
θ
(t)
2 − 1

1 + λ

)
·
(
1− 2η(1 + λ)

)
.

8.2. Gradient descent for feature learning

Now let’s go beyond linear regression and allow all parameters to be trained. We consider

f(x) = w · σ
(

1
√
p
W1x

)

as before, but rename

w = aT and
1
√
p
W1 = W

(our vectors, like a, should be column vectors). So we have

fθ(x) = aT · σ(Wx)

for a ∈ Rm, W ∈ Rm×p, and x ∈ Rp, depending on the parameters θ := {a,W} (a

(m+m · p)-dimensional vector). We are given n observations

(x̂1, ŷ1), . . . , (x̂n, ŷn) ∈ Rp × R,

i.e. we want

fθ(x̂k) = ŷk for all k = 1, . . . , n.

We measure deviation from this by the loss function

L(θ) = 1

2

n∑
k=1

(
fθ(x̂k)− ŷk

)2
.



We want to minimize this by changing θ via gradient descent:

θ(t+ 1) = θ(t)− η∇θ L
(
θ(t)

)
,

or, by renaming,

θ(t+∆t) = θ(t)− η∆t∇θ L
(
θ(t)

)
,

which, after rearranging and for ∆t↘ 0, becomes

dθ(t)

dt
= −η∇θ L

(
θ(t)

)
.

We also write θt = θ(t). Any change in θ induces a change in ft := fθ(t), which is our

main concern. We have

dft(x)

dt
=

dfθ(t)(x)

dt
= ∇θfθ(t)(x)

T · dθ(t)
dt

= −η∇θfθ(t)(x)
T · ∇θ L(θt).

Now

∇θ L(θt) =
n∑
k=1

∇θ
1

2

(
fθt(x̂k)− ŷk

)2
=

n∑
k=1

(
ft(x̂k)− ŷk

)
∇θft(x̂k)

and thus
dft(x)

dt
= −η

n∑
k=1

∇θft(x)
T · ∇θft(x̂k) ·

(
ft(x̂k)− ŷk

)
.

8.3. Neural tangent kernel

We now define the neural tangent kernel

kt(x, x̃) := ∇θft(x)
T · ∇θft(x̃),

which was introduced by Jacot, Gabriel, and Hongler [JGH18] in 2018.

Note that a priori kt is a probabilistic object which depends on time t. Unless we

can say more about it, the above is just a compact and useless way of writing down the

time-evolution in an abstract way.

However, it turns out that in the large width limit m → ∞, kt converges to a limit

object k, which

• is deterministic (which we can believe by concentration),

• is independent of time (which is not so clear right now, maybe later there will be

more on this), and



• stays away from zero, i.e. k ≥ δI for some δ > 0, thus has only strictly positive

eigenvalues.

Note that with

X̂ =
(
x̂1 . . . x̂n

)
and Ŷ =

ŷ1...
ŷn


we have

dft(x)

dt
= −η∇θft(x)

T ·
n∑
k=1

∇θft(x̂k) ·
(
ft(x̂k)− ŷk

)
= −η∇θft(x)

T · ∇θft(X̂) ·
(
ft(X̂)− Ŷ

) (4)

and thus
dft(X̂)

dt
= −η∇θft(X̂)T · ∇θft(X̂) ·

(
ft(X̂)− Ŷ

)
,

so
d
(
ft(X̂)− Ŷ

)
dt

= −η∇θft(X̂)T · ∇θft(X̂) ·
(
ft(X̂ − Ŷ )

)
,

where

∇θft(X̂)T · ∇θft(X̂) ≈ k(X̂, X̂)

is constant and ≥ δI, so ft(X̂) converges exponentially to Ŷ :

(
ft(X̂)− Ŷ

)
= exp

(
−ηtk(X̂, X̂)

)
·
(
f0(X̂)− Ŷ

)
,

8.4. Test error in the random feature model

Thus the training error goes to zero; but how about the test error? What is the prediction

for t→ ∞ for arbitrary, “unseen” data x? By (4), we have

dft(x)

dt
= −ηk(x, X̂)

(
ft(X̂)− Ŷ

)
= −ηk(x, X̂) exp

(
−ηtk(X̂, X̂)

)
·
(
f0(X̂)− Ŷ

)
,

so

ft(x) = k(x, X̂) · k(X̂, X̂)−1 exp
(
−ηtk(X̂, X̂)

)
·
(
f0(X̂)− Ŷ

)
+ C.

For t = 0, we have

f0(x) = C + k(x, X̂) · k(X̂, X̂)−1
(
f0(X̂)− Ŷ

)
,



so

ft(x) = f0(x)− k(x, X̂) · k(X̂, X̂)−1 ·
(
f0(X̂)− Ŷ

)
+ k(x, X̂) · k(X̂, X̂)−1 exp

(
−ηtk(X̂, X̂)

)
·
(
f0(X̂)− Ŷ

)
= f0(x) + k(x, X̂) · k(X̂, X̂)−1

(
exp
(
−ηtk(X̂, X̂)

)
− 1
)
·
(
f0(X̂)− Ŷ

)
and thus for t→ ∞

f∞(x) = f0(x) + k(x, X̂) · k(X̂, X̂)−1 ·
(
Ŷ − f0(X̂)

)
.

Applying some centering we can restrict to the case where f0 = 0, thus

f∞(x) = k(x, X̂)k(X̂, X̂)−1Ŷ .

We now have to prescribe some model for the unseen data, like

y = g(x) = aTTσT (WTx) +N,

where the subindex T stands for “teacher” and N is some noise. Then the test error is

Etest = Ex

[(
g(x)− f∞(x)

)2]
= Ex

[(
g(x)− k(x, X̂)k(X̂, X̂)−1Ŷ

)2]
.

In principle, this can be expressed as a complicated, but manageable (namely rational)

function in the involved random matrices. In particular, note:

(i) The quantities ∇θfθ(x) and thus k(x, x̃) can be given explicitly: from

fθ(x) = aTσ(Wx)

we get as in linear regression

∇afθ(x) = σ(Wx).

But what is ∇wfθ(x)? Write

a =

a1
...
am

 and W =

w
T
1
...
wTm

 for wi ∈ Rp,

then

fθ(x) =
m∑
i=1

aiσ(w
T
i x)



and

∇wi
fθ(x) = aiσ

′(wTi x) · x,

thus

k(x, x̃) = ∇afθ(x)
T · ∇afθ(x̃) +∇wfθ(x)

T · ∇wfθ(x̃)

= σ(Wx)Tσ(Wx̃) +
m∑
i=1

a2iσ
′(wTi x)

Tσ′(wTi x̃)x
T x̃

and thus for the data matrices

k(X, X̃) = σ(WX)Tσ(WX̃) +XT X̃ ⊙
m∑
i=1

a2iσ
′(wTi X)Tσ′(wTi X̃)

= σ(WX)Tσ(WX̃) +XT X̃ ⊙ σ′(WX)T diag(a)σ′(WX̃),

where ⊙ is the Hadamard product and

diag(a) =

a1 0
. . .

0 am

 .

(ii) By the Gaussian equivalence principle from Section 7.6, we can replace non-linear

random matrices like σ(WX) by linear+noise random matrices αWX + βZ.

We will not go more into those calculations. For details one should see [AP20].

8.5. Concentration of the neural tangent kernel

We still should get a better understanding of the claimed asymptotic properties of the

neural tangent kernel (NTK). Consider for simplicity the model

fθ(x) =
1√
m
aTσ(Wx) =

1√
m

m∑
i=1

aiσ(w
T
i x),

where we only optimize over W and keep a fixed, thus θ = {W} . For asymptotic state-

ments we have to be precise about our normalizations; we choose:

• ai uniformly on {−1,+1}, so that ∥a∥ ∼ 1,

• W as a standard Gaussian random matrix, i.e. each wi ∼ N(0, Ip), and

• ∥x∥ = 1.



The kernel k is then given by

k(x, x̃) = ∇wfθ(x)
T · ∇wfθ(x̃) = xT x̃ · 1

m

m∑
i=1

a2i︸︷︷︸
=1

σ′(wTi x)σ
′(wTi x̃).

Note that σ′(wTi x)σ
′(wTi x̃) is independent for different i and has the same distribution for

each i, thus they are i.i.d.. In particular, for v ∼ N(0, Ip), we have

1

m

m∑
i=1

a2i︸︷︷︸
=1

σ′(wTi x)σ
′(wTi x̃)

m→∞−−−→ Ev
[
σ′(vTx)σ′(vT x̃)

]
by the law of large numbers. Define the limiting NTK k∗ by

k∗(x, x̃) = Ev
[
σ′(vTx)σ′(vT x̃)

]
xT x̃, (5)

then by the above and by concentration, with high probability for sufficiently large m we

have

|k(x, x̃)− k∗(x, x̃)| < ε.

Example. In some cases one can also calculate the limiting NTK k∗. Let us consider

σ = ReLU, then

σ′(t) =

{
1, t > 0,

0, t < 0
.

Let ∥x∥ = 1 = ∥x̃∥. What is Ev[1{vT x>0} · 1{vT x̃>0}]? Note that t1 = vTx and t2 = vT x̃ are

two Gaussian vectors with covariance

Σ =

(
1 α
α 1

)
where α = xT x̃,

thus

Σ−1 =
1

1− α2

(
1 −α
−α 1

)
and we have the joint density

ψ(t1, t2) =
1

2π
(
det(Σ)

) 1
2

exp

(
−1

2

〈(
t1
t2

)
,Σ−1

(
t1
t2

)〉)

=
1

2π
√
1− α2

exp

(
−1

2

t21 + t22 − 2αt1t2
1− α2

)
.

So we have to calculate

Ev[1{vT x>0} · 1{vT x̃>0}] =

∫ ∞

0

∫ ∞

0

ψ(t1, t2) dt1 dt2.



This can be done by manipulating the integrals, but we prefer here another approach

without explicit integration: This is the same problem if we restrict to the plane spanned

by x and x̃, so we can assume that x, x̃, v ∈ R2 and v ∼ N(0, I2). Since vTx > 0 if and

only if vT

∥v∥ · x > 0, we can replace v ∼ N(0, I2) by vT

∥v∥ from the uniform distribution on

S1 = {exp(iφ) | 0 ≤ φ ≤ 2π}. So what we want is, for given x, x̃ ∈ R2:

P {exp(iφ) : ⟨exp(iφ), x⟩ ≥ 0 and ⟨exp(iφ), x̃⟩ ≥ 0} .

So

k∗(x, x̃) = xT x̃
π − arccos(xT x̃)

2π
.

8.6. Evolution of the neural tangent kernel under training

Now consider the evolution under training. First we show that the weight vectors do not

change much. Recall that we have (put η = 1)

dθ(t)

dt
= −∇θ L

(
θ(t)

)
= −

n∑
k=1

(
ft(x̂k)− ŷk

)
· ∇θft(x̂k).

For θ = wi we get

∇wi
ft(x̂k) = aiσ

′(wTi x̂k)x̂k ·
1√
m
,

thus
dwi
dt

= − 1√
m

n∑
k=1

(
ft(x̂k)− ŷk

)
· aiσ′(wTi x̂k)x̂k.



Now consider the evolution of the weights: since wTi x̂k is a Gaussian variable of variance

∥x̂k∥ = 1, we have

∥wi(t)− wi(0)∥2 =
∥∥∥∥∫ t

0

dwi(τ)

dτ
dτ

∥∥∥∥
2

=

∥∥∥∥∥
∫ t

0

1√
m

n∑
k=1

(
ft(x̂k)− ŷk

)
· aiσ′(wTi x̂k)x̂k dτ

∥∥∥∥∥
2

≤ 1√
m

n∑
k=1

∫ t

0

[order 1] dτ

∼ order
t · n√
m
,

which is small if m→ ∞ for fixed t and n.

Now consider the change in the kernel: since xT x̃ ≤ ∥x∥ · ∥x̃∥ = 1, we have

|kt(x, x̃)− k0(x, x̃)|

=
∣∣∣xT x̃ 1

m

m∑
i=1

(
σ′(wi(t)Tx)σ′(wi(t)T x̃)− σ′(wi(0)Tx)σ′(wi(0)T x̃))∣∣∣

≤ 1

m

m∑
i=1

∣∣∣σ′(wi(t)Tx)σ′(wi(t)T x̃)− σ′(wi(t)Tx)σ′(wi(0)T x̃)
+ σ′(wi(t)Tx)σ′(wi(0)T x̃)− σ′(wi(0)Tx)σ′(wi(0)T x̃)∣∣∣

≤ 1

m

m∑
i=1

(
max

{∣∣σ′(wi(t)Tx)∣∣} · ∣∣σ′(wi(t)T x̃)− σ′(wi(0)T x̃)∣∣
+
∣∣σ′(wi(t)Tx)− σ′(wi(0)Tx)∣∣ ·max

{∣∣σ′(wi(0)T x̃)∣∣})
≤ 1

m

m∑
i=1

(
max

{∣∣σ′(wi(t)Tx)∣∣} ·max {σ′′(. . .)} ·
∥∥(wi(t)T − wi(0)

T
)
x̃
∥∥

+max {σ′′(. . .)} ·
∥∥(wi(t)T − wi(0)

T
)
x
∥∥ ·max

{∣∣σ′(wi(0)T x̃)∣∣}).
Since ∥∥(wi(t)T − wi(0)

T
)
x̃
∥∥ ∼ t · n√

m
· ∥x̃∥ =

t · n√
m
,

we have that |kt(x, x̃)− k0(x, x̃)| is of order t·n√
m

, which goes to zero for m→ ∞ for fixed

t and n.



If we put kij = k(x̂i, x̂j) such that k = (kij) is an n × n-matrix, then also in operator

norm

∥k(t)− k(0)∥ ≤ ∥k(t)− k(0)∥F =

(
n∑

i,j=1

|kij(t)− kij(0)|2
) 1

2

≤

(
n∑

i,j=1

[
order

t · n√
m

]) 1
2

∼ tn2

√
m

m→∞−−−→ 0

for fixed t and n.

8.7. Boundedness away from zero of the neural tangent kernel

In order to see that the limiting NTK k∗ according to Equation (5) (and thus also its

approximations in high dimensions) has only positive eigenvalues which are bounded away

from zero, i.e., k∗ ≥ δ · I, one should note:

• k∗ is essentially diagonal, k∗(x, x̃) ≈ 0 since two vectors in high dimension are with

high probability almost orthogonal, and

• k∗(x, x) = Ev
[
σ′(vTx)σ′(vTx)

]
≥ δ in general.

As an example for the latter statement, let us check this concretely for the case σ = ReLU;

then

k∗(x, x) =
π − arccos(1)

2π
=
π − π

2

2π
=

1

4
.



9. (Operator-valued) Free Probability Theory

We have seen that the calculation of the eigenvalue distribution or the Stieltjes transform

of polynomials or even rational functions in several random matrices is relevant. Free

probability theory, which was introduced by Dan Voiculescu in the 1980’s, provides pow-

erful tools for dealing with this. In the following we will give an appetizer for this; for

more details on those topics, see [MS17].

9.1. Free cumulants and freeness

In Section 7 we have seen that our matrices often have some special structure (at least

asymptotically) for the cumulants of their entries. In order not to have to bother with the

transpose for general rectangular matrices, we consider now symmetric square matrices:

X = (xij)
n
i,j=1, X = XT (i.e. xij = xji).

For those, typically in leading order only cumulants with cyclic index structure survive:

κℓ(xi(1)i(2), xi(2)i(3), . . . , xi(ℓ)i(1)) ∼ n−(l−1).

Their value is independent of i(1), . . . , i(ℓ) for distinct i(1), . . . , i(ℓ). So let us put

rℓ := lim
n→∞

nℓ−1κℓ(xi(1)i(2), xi(2)i(3), . . . , xi(ℓ)i(1)).

Note that the order n−(l−1) is the right one for a ℓ-th cumulant to make a contribution in

the calculation of

E
[
tr(Xℓ)

]
= E

[
1

n
Tr(Xℓ)

]
=

1

n

n∑
i(1),...,i(ℓ)=1

E[xi(1)i(2)xi(2)i(3) · . . . · xi(n)i(1)]

=
1

n

n∑
i(1),...,i(ℓ)=1

∑
π∈P(ℓ)

κπ(xi(1)i(2), xi(2)i(3), . . . , xi(n)i(1)).

Since κπ(xi(1)i(2), xi(2)i(3), . . . , xi(n)i(1)) is at most of order n−(ℓ−1) and the sum over the i(j)

has about nℓ terms, we get E
[
tr(Xℓ)

]
∼ 1.

If one collects the leading order contributions in this, one gets a “non-commutative”

version of a moment-cumulant relation between the mℓ := limn→∞ tr(Xℓ) and the rℓ.

Example. If ℓ = 1, then

E
[
tr(X)

]
=
∑
i

1

n
E[xii] =

∑
i

1

n
κ1(xii) → r1



and

E
[
tr(X2)

]
=
∑
i,j

1

n
E[xijxji] =

∑
i,j

1

n

(
κ1(xij)︸ ︷︷ ︸
∼δijr1

κ1(xij) + κ2(xij, xji)︸ ︷︷ ︸
∼ 1

n
r2

)
→ r1r1 + r2,

this looks like the normal moment-cumulant relation for the usual cumulants. But consider

now ℓ = 4, and assume that odd cumulants don’t contribute, i.e. r1 = r3 = 0. Then

E
[
tr(X4)

]
=

1

n

n∑
i(1),...,i(4)=1

xi(1)i(2)xi(2)i(3)xi(3)i(4)xi(4)i(1)︸ ︷︷ ︸
κ +κ +κ +κ

.

Looking at the summands in detail, we have

κ ∼ r4n
−3 ⇝ r4,

κ = κ2(xi(1)i(2), xi(2)i(3)) · κ2(xi(3)i(4), xi(4)i(1))

∼ δi(1)i(3)r2n
−1 · δi(3)i(1)r2n−1

∼ r2 · r2n−2δi(1)i(3)

⇝ r2 · r2,

κ ⇝ r2 · r2,

κ = κ2(xi(1)i(2), xi(3)i(4)) · κ2(xi(2)i(3), xi(4)i(1))

∼ δi(1)i(4)δi(2)i(3)δi(1)i(3)δi(2)i(4)r2 · (. . .)r2

∼ r2 · r2n−2 · δ(at least two indices equal)

⇝ 0.

Thus does asymptotically not contribute; this is true in general, crossing parti-

tions do not contribute and we have the “free” moment-cumulant relation:

mℓ =
∑

π∈NC(ℓ)

rπ,

where NC(ℓ) ⊂ P(ℓ) is the set of all non-crossing partitions. The rℓ are called free

cumulants. Note that one also has a multivariate version of this, then the vanishing of

classical mixed cumulants of entries of two independent matrices implies vanishing of

the corresponding mixed free cumulants, which gives a notion of “free independence” or

“freeness”, hence the name free probability theory.

9.2. Linearization of non-linear problems

Vanishing of mixed cumulants implies additivity of free cumulants for the sum, and allows

sums of “asymptotically free” random matrices to be treated. This looks nice, but how



about polynomials or rational functions, as they showed up in Section 7? Those can also

be addressed via the following linearization trick. The idea is to reformulate a polynomial

(non-linear) problem into a linear one with matrix coefficients, which makes it an operator-

valued linear problem.

We will give the idea of this only via a concrete example.

Example. Consider the polynomial P = p(X, Y ) = XY +Y X+X2. We want its Stieltjes

transform

Sp(z) = E
[
tr
(
(P − z · 1)−1

)]
.

How do we deal with the inverse of P −z ·1? For this, we embed the problem in matrices:XY + Y X +X2 − z · 1 0 0
0 0 −1
0 −1 0



=

1 Y + X
2

X
0 1 0
0 0 1

 ·

 −z X Y + X
2

X 0 −1
Y + X

2
−1 0

 ·

 1 0 0
Y + X

2
1 0

X 0 1


and since the triangular matrices are always invertible, we have(P − z · 1)−1 0 0

0 0 −1
0 −1 0



=

 1 0 0
Y + X

2
1 0

X 0 1

−1

·

 −z X Y + X
2

X 0 −1
Y + X

2
−1 0

−1

·

1 Y + X
2

X
0 1 0
0 0 1

−1

=

1 0 0
∗ 1 0
∗ ∗ 1

 ·

 −z X Y + X
2

X 0 −1
Y + X

2
−1 0

−1

·

1 ∗ ∗
0 1 ∗
0 0 1


and thus

(P − z · 1)−1 =
[(
P̂ − Λ(z)

)−1
]
1,1
,

where

P̂ :=

 0 X Y + X
2

X 0 −1
Y + X

2
−1 0

 and Λ(z) :=

z 0 0
0 0 0
0 0 0

 .

Now P̂ is a linear polynomial in X and Y with matrix coefficients:

P̂ =

0 0 0
0 0 −1
0 −1 0

 · 1 +

0 1 1
2

1 0 0
1
2

0 0

 ·X +

0 0 1
0 0 0
1 0 0

 · Y.



This can then be dealt with by operator-valued free probability theory, which allows to

calculate the distribution of such matrix-valued linear combinations.

Note also that the above factorization of P might have looked very special, but indeed

for any polynomial (and actually also for any non-commutative rational function) P there

exists (via a concrete algorithm) such a linearization P̂ .



10. Assignments

10.1. Assignment 1

Exercise 1 (5 points). Show that∫
R
exp(−t2) dt =

√
π.

Hint: start by showing that

(∫
R
exp(−t2) dt

)2

=

∫
R

∫
R
exp(−t2 − s2) dt ds

and compute the double integral using polar coordinates.

Definition. A real random variable x is a Gaussian random variable with mean µ ∈ R

and variance σ2 ∈ (0,∞), denoted by x ∼ N(µ, σ2), if its probability density function ψ

is given by

ψ : R → R, t 7→ ψ(t) =
1

σ
√
2π

exp

(
−1

2

(
t− µ

σ

)2
)
.

If µ = 0 and σ = 1, then x is also called a standard Gaussian.

For a function f : R → R, the expectation of f(x) is

E[f(x)] =

∫
R
f(t)ψ(t) dt;

the n-th moment of x is given by

E[xn] =

∫
R
tnψ(t) dt.



Exercise 2 (3 + 4 + 3 + 3 + 2 points). Let x ∼ N(µ, σ2).

(a) Use Exercise 1 to compute E[x0] and E[x1]. Explain the results.

(b) Show that x satisfies the moment recursion

E[xn] = µE[xn−1] + (n− 1)σ2E[xn−2] for all integers n ≥ 2.

(c) Find the higher moments E[x2], E[x3], and E[x4].

(d) Give an explicit formula for the moments of x in the case µ = 0.

(e) Calculate for the standard Gaussian x ∼ N(0, 1) the first central moment

E [|x|] =
∫
R
|t|ψ(t) dt.

Exercise 3 (3 + 3 + 4 points). We know from class that

P {(t1, . . . , tp) ∈ Bp : |tp| ≥ ε} =
2
∫ 1

ε
vol[Bp−1(

√
1− t2)] dt

vol[Bp]

= 2
vol[Bp−1]

vol[Bp]

∫ 1

ε

(1− t2)
p−1
2 dt.

Note that this includes also in particular for ε = 0 a formula for the ratio of the unit balls

of consecutive dimensions:

1 = 2
vol[Bp−1]

vol[Bp]

∫ 1

0

(1− t2)
p−1
2 dt.

By estimating the integrals we want to show from this an estimate for

P {(t1, . . . , tp) ∈ Bp : |tp| ≥ ε} .

(a) Prove for y ≥ 0 the estimate

∫ ∞

y

exp(−t2) dt ≤
√
π

2
exp(−y2).

Hint: treat the cases y ≤ 1 and y > 1 separately.



(b) Let p ≥ 3. Prove that

∫ 1

0

(1− t2)
p−1
2 dt ≥

∫ 1√
p−1

0

(1− t2)
p−1
2 dt ≥ 1

2
√
p− 1

.

Hint: Bernoulli’s inequality states that (1 + a)b ≥ 1 + ab for all real numbers b ≥ 1

and a ≥ −1.

(c) Let p ≥ 3. Show that

P {(t1, . . . , tp) ∈ Bp : |tp| ≥ ε} ≤
√
2π exp

(
−ε2p− 1

2

)
,

and thus

P {(t1, . . . , tp) ∈ Bp : |tp| ≤ ε} ≥ 1−
√
2π exp

(
−ε2p− 1

2

)
.

Hint: use Lemma 1.4: for p ≥ 1 und 0 < ε ≤ 1 we have (1− ε)p ≤ exp(−εp).

Definition. Let x = (t1, . . . , tp) ∈ Rp. We define the following norms:

• ∥x∥2 :=

√√√√ p∑
k=1

t2k (Euclidean norm, length, 2-norm)

• ∥x∥1 :=
p∑

k=1

|tk| (ℓ1 norm, Manhattan norm, 1-norm)

• ∥x∥∞ := max {|tk| : 1 ≤ k ≤ p} (maximum norm, infinity norm)

Exercise 4 (4 + 3 + 3 points). In this exercise, you are tasked with performing some

numerical experiments and presenting the results as a histogram similar to the ones shown

in the slides of the first lecture. You are free to choose your tools to do this, for example,

you can use computer algebra systems with integrated plotting like MATLAB, Maple, or

Mathematica, or use a programming language of your choice to compute the values and

combine it with some visualization tool to plot the histogram.

As the slides in class, this exercise should give you a feeling for the concentration phe-

nomena. We consider in the following Gaussian random vectors x ∈ Rp with independent



standard Gaussians as components; i.e., every component of the vector is a Gaussian ran-

dom variable with mean zero and variance 1 and the components are independent from

each other. Such vectors show concentration.

The concentration property says roughly that for our high-dimensional vector x =

(t1, . . . , tp) ∈ Rp any function f(x) = f(t1, . . . , tp) that depends (in a ‘smooth’ way) on

the components (but not too much on any of them) is essentially constant, and thus close

to the average value E[f(x)] of the function. (Later in the course the parentheticals will

be made more precise via the notion of Lipschitz functions.) In part (a) we consider

the relatively simple situation where the function f is essentially a sum of independent

components. In that case the expectation is also quite easy to determine. In part (b), the

function f is much more non-linear, and its expectation is not directly clear. In part (c),

we arrange our vectors in a matrix form and take as function f the largest eigenvalue of

those matrices – these are very non-linear (and not very concrete) functions of the matrix

entries, but still ‘smooth enough’, so that we also have concentration of the eigenvalues.

(a) For f we take here the 1-norm f(x) = ∥x∥1 and the 2-norm f(x) = ∥x∥2. For each

of the two cases plot a histogram of f(x) for 1, 000 realizations of the vector x ∈ Rp.

Do this for p = 1, p = 100, and p = 10, 000. You should recognize in those plots

the dependence of E[f(x)] on p. Can you explain those values? (For the case of the

1-norm, Exercise 2(e) should be relevant.)

(b) For f we take now the maximum norm f(x) = ∥x∥∞. Plot a histogram of f(x) for

1,000 realizations of the vector x ∈ Rp. Do this for p = 1, p = 10, p = 10, 000, and

p = 100, 000.

The value of E[f(x)] will probably not become clear from the plots. Instead, we

can look at some estimates for the concentration: let M be the median of the f(xj),

then for all ε > 0 we have

P (f(x) > (1 + ε)M) ≤
√

2

π

p

(1 + ε)M
exp

(
−1

2
(1 + ε)2M2

)
.

Check for some reasonable values for ε whether this is compatible with your data.

(c) We consider now a sample covariance matrix

Σ̂ =
1

n

n∑
k=1

xkx
T
k =

1

n
XXT ,



where x1, . . . , xn ∈ Rp are n independent copies of our p-dimensional random vectors

x as above, and X = [x1x2 . . . xn] ∈ Rp×n is the corresponding data matrix. (Such

random matrices Σ̂ are called Wishart matrices.) We take as our function f now

the largest eigenvalue of Σ̂ (which is the same as the square of the largest singular

value of the matrix X/
√
n.) This f(X) = f(x1, . . . , xn) is a very non-linear (and

not explicit) function of the p × n independent standard Gaussian entries of the

data matrix X. Plot a histogram of f(X) for 1, 000 realizations of the data matrix

X = [x1 . . . xn]. Do this for p = n = 1, p = n = 10, p = n = 50, p = n = 100.

In this case concentration estimates are quite complicated and not very explicit, so

let us just quote the following simple rules of thumb (according to the paper “On

the distribution of the largest eigenvalue in principal component analysis” by Iain

Johnstone): define

µ :=
1

n

(√
n− 1 +

√
p
)2

and σ :=
1

n

(√
n− 1 +

√
p
)( 1√

n− 1
+

1
√
p

) 1
3

.

Then, about 83% of the distribution is less than µ, about 95% lies below µ+σ, and

about 99% lies below µ+ 2σ.

Check whether this is compatible with your data.

Further experimentation is encouraged.



10.2. Assignment 2

Definition. A random vector x ∈ Rp is a Gaussian random vector with mean vector

µ ∈ Rp and covariance matrix Σ ∈ Rp×p, denoted x ∼ N(µ,Σ), if its probability density

function ψ is given by

ψ(x) =
1

(2π)p/2 det(Σ)1/2
exp

(
−1

2

〈
x− µ,Σ−1(x− µ)

〉)
.

The mean µ can be an arbitrary vector in Rp, but the covariance matrix Σ ∈ Rp×p has to

be positive definite.

If µ = 0 and Σ = Ip, then x is also called a standard Gaussian random vector.

Exercise 5 (6 points). Consider n independent copies x1, . . . , xn ∈ Rp of Gaussian

random vectors with mean zero, where the components of each xk are independent and

half of them has variance 1 and the other half has variance 2. Plot a histogram of the p

eigenvalues of the sample covariance matrix

Σ̂ :=
1

n

n∑
k=1

xkx
T
k ∈ Rp×p

for the following parameters:

(i) p = 100, n = 400

(ii) p = 100, n = 4000

(iii) p = 100, n = 40000

(iv) p = 500, n = 2000

(v) p = 1000, n = 4000

in the domain [0, 4]. Choose 1
10

as the width of the bars (or bins) in the histogram.

Further experimentation is encouraged.



Exercise 6 (3 + 3 + 3∗ + 3 points). In this exercise, let p = 1,000.

(a) Consider n independent copies x1, . . . , xn ∈ Rp of standard Gaussian random vec-

tors, i.e., xi ∼ N(0, Ip). As in Exercise 5, plot the histogram for the p eigenvalues

of the sample covariance matrix and compare this with the Marchenko-Pastur dis-

tribution, which is given by the density

ψ(t) =
1

2π

√
(γ+ − t)(t− γ−)

γt
on the interval [γ−, γ+],

where

γ =
p

n
, γ− = (1−√

γ)2, γ+ = (1 +
√
γ)2.

Do this for γ = 1
4
, γ = 1

2
and γ = 1.

Hint: functions that draw histograms often can also automatically rescale the data

to mimic a probability density function, which allows to draw actual densities like

Marchenko-Pastur on top for easier comparison.

(b) The above is for γ ≤ 1. How does the formula change for γ > 1? Plot the cases

γ = 2 and γ = 4 like above.

(c) Bonus: what is the relation between the case γ and the case 1
γ
?

Hint: how are the eigenvalues of XXT and XTX for a rectangular matrix X related?

(d) Now change in xi ∼ N(0, Ip) the covariance matrix from Ip to Σ by replacing

the (1, 1)-entry 1 with 1 + β and plot again the histograms from above for all

combinations of γ ∈
{

1
4
, 1
2
, 1
}

and β ∈ {1, 2}.

The BBP (Baik, Ben Arous, Péché) transition predicts that (in the limit n → ∞)

the eigenvalue 1 + β of Σ survives as a visible outlier in the eigenvalues of Σ̂, as

long as β ≥ √
γ, and then sits at the position (1 + β)(1 + γ

β
). Check whether this is

confirmed by your data!

Exercise 7 (3 + 3 points). Let x ∈ Rp be a random vector with probability density

function ψ : Rp → R, then the expectation of x is

E[x] =

∫
Rp

xψ(x) dx ∈ Rp.



and the covariance of x is

Σ(x) = E[xxT ]− E[x]E[x]T ∈ Rp×p.

Let A ∈ Rp×p and b ∈ Rp.

(a) Show that E is linear in the sense that E[Ax+ b] = AE[x] + b.

(b) Write Σ(Ax+ b) in terms of Σ(x).



Exercise 8 (3 + 3 + 3 + 2∗ points).

(a) Show that for a standard Gaussian random variable x ∼ N(0, Ip) we have E[x] = 0

and Σ(x) = Ip.

(b) Let y = Ax+ b be an affine transformation of x ∼ N(µ,Σ) by an invertible matrix

A ∈ Rp×p and an arbitrary vector b ∈ Rp. Find µ̃ and Σ̃ such that y ∼ N(µ̃, Σ̃).

(c) Conclude that for x ∼ N(µ,Σ) we have E[x] = µ and Σ(x) = Σ.

(d) Bonus: the affine transformation y = Ax + b for x ∼ N(0, Ip) also makes sense for

arbitrary matrices A that are not necessarily invertible. It seems appropriate to also

call this a Gaussian random vector. Are there uniform descriptions which support

this point of view?

Exercise 9 (5 + 5 points). We will address here concentration estimates for the law of

large numbers, and see that control of higher moments allows stronger estimates. Let xi
be a sequence of independent and identically distributed random variables with common

mean µ = E[xi] and write X := (x1, x2, . . . ) We put

Sn(X) = Sn(x1, . . . , xn) :=
1

n

n∑
i=1

xi.

(a) Assume that the variance V [xi] is finite. Prove that we have then the weak law of

large numbers, i.e., convergence in probability of Sn to the mean: for any ε > 0

P {(x1, . . . , xn) : |Sn(X)− µ| ≥ ε} n→∞−−−→ 0.

(b) Assume that the fourth moment of the xi is finite, i.e. E[x4i ] < ∞ (note that this

implies that also all moments of smaller order are finite). Show that we then have

∞∑
n=1

P {(x1, . . . , xn) : |Sn(X)− µ| ≥ ε} <∞.

(Note: by the Borel-Cantelli Lemma, this then implies the strong law of large num-

bers, i.e., Sn → µ almost surely.)

One should also note that our assumptions for the weak and strong law of large numbers

are far from optimal. Even the existence of the variance is not needed for them, but for

proofs of such general versions one needs other tools than our simple consequences of the

Chebyshev/Markov inequalities.



10.3. Assignment 3

Exercise 10 (2+5+3+5 points). Fix p ∈ [0, 1]. Let y1, . . . , yn be independent Bernoulli

random variables with

P {yi = 1} = p, P {yi = 0} = 1− p

and consider y := y1 + . . .+ yn. Let δ > 0.

(a) Show that E[exp(λyi)] ≤ exp(p(exp(λ)− 1)) holds for every λ > 0.

(b) Conclude the following classic Chernoff bound:

P {y ≥ (1 + δ)np} ≤
(

exp(δ)

(1 + δ)1+δ

)np
.

Hint: we know from class that

P {y ≥ α} ≤ exp(−λα)
n∏
i=1

E[exp(λyi)] for any λ > 0.

(c) Assume you are rolling a fair six-sided dice n times. Apply (b) to estimate the

probability to roll a six at least 70% of the experiments.

(d) Compare the estimate of (b) with the estimates from the Markov and the Cheby-

shev Inequalities. Run a simulation of the experiment in (c) to test how tight the

predictions of the three bounds are for n ∈ {1, 5, 25, 100} (use 1,000 repetitions of

each experiment to get sensible data).



Exercise 11 (6 + 6 points).

(a) Let x be a sub-exponential centred random variable, i.e. a one-dimensional real ran-

dom variable with mean zero and such that there exists a constant c > 0 satisfying

E[exp(λx)] ≤ exp(c2λ2) for all |λ| ≤ 1

c
.

Let α > 0. Prove that we then have

P {x ≥ α} ≤

exp

(
− α2

4c2

)
, if α ≤ 2c,

exp
(
− α

2c

)
, if α > 2c.

(b) In the proof of Theorem 2.2. we have shown that for a standard Gaussian random

vector x ∼ N(0, Ip) we have the concentration

P
{∣∣∥x∥2 − p

∣∣ ≥ ε
√
p
}
≤ 2 exp

(
− ε2

16

)
.

However, this was only for the case where ε√p ≤ p, but the proof actually works

for all ε√p ≤ 2p. Complement this now by a corresponding estimate also for the

case of large deviations ε√p > 2p.

Exercise 12 (7 points). Show that every bounded random variable is sub-Gaussian: let

x be a real random variable that is bounded, i.e., for some a, b ∈ R we have

P{a ≤ x ≤ b} = 1.

Assume also that x is centred, i.e., E[x] = 0. Then there exists a c ∈ R such that we have

for all λ

E[exp(λx)] ≤ exp(cλ2).

The best constant is actually given by c = (b−a)2
8

, but here we are satisfied with any

bound.

Hint: for symmetric distributions the situation is easy; in the non-symmetric case one

might try to symmetrize the situation by going over, as in our proof of Theorem 3.2., from

E[exp(λx)] to E[exp(λ(x− y))], where y is an independent copy of x.



Exercise 13 (2 + 4 points). Consider the following statement: if h := f ◦ g is the

composition of two convex functions f, g : R → R, then h is also convex.

(a) Give a counterexample to show that the statement is not true in general.

(b) Repair the statement by introducing an additional assumption on f and g and prove

the statement under this assumption.



10.4. Assignment 4

Besides Wishart matrices the other important random matrix ensemble is given by Wigner

matrices. A symmetric matrix X = XT ∈ Rn×n is a Wigner matrix if, apart from the

symmetry condition, all its entries are independent and identically distributed according

to a centred Gaussian distribution (this can be more general, but let us restrict here to

Gaussians). In order to have an asymptotic distribution for n→ ∞ we have to normalize

the entries to have variance 1/n, i.e., our Wigner matrix has the form

Xn =
1√
n
(xij)

n
i,j=1 ∈ Rn×n,

where

• xij ∼ N(0, 1) for all i, j,

• {xij : 1 ≤ i ≤ j ≤ n} is independent, and

• xji = xij for all i, j.

Their asymptotic eigenvalue distribution was determined by Wigner in 1955; this was

the first and still most fundamental (asymptotic) result about random matrices. In the

following two exercises we will address Wigner’s semicircle law from a numerical and a

theoretical perspective.

Exercise 14 (6 points). Generate histograms of the eigenvalues of an n × n Wigner

matrix, where n ∈ {10, 100, 1000, 2000}. Do this in each case for at least two realizations,

in order to convince yourself that also in this case we have concentration of the eigenvalues

around a deterministic asymptotic distribution. This asymptotic distribution is Wigner’s

semicircle, which has density

ψ(t) =
1

2π

√
4− t2 on [−2, 2].

Compare your histograms with this semicircle distribution.



Exercise 15 (3 + 3 + 3 + 3 points). We will now determine the form of the semicircle

in an analytic way relying on the Stieltjes transform, similar as we did it in class for

the Marchenko-Pastur distribution. Denote by Sn the Stieltjes transform of our Wigner

matrices,

Sn(z) = E
[
tr
(
(Xn − zIn)

−1
)]

We will try to derive an equation for the limiting Stieltjes transform (assuming that it

exists) S(z) := limn→∞ Sn(z), by writing Xn in the form

Xn =
1√
n

(
x11 xT

x Y

)
,

where Y ∈ R(n−1)×(n−1) contains the last n − 1 rows and columns of Xn and x ∈ Rn−1

is the vector x = (x21, . . . , xn1)
T . The replacement of the Sherman-Morrison formula in

this case is given by Schur’s complement formula, which says that for a decomposition of

M ∈ Rn×n in the form

M =

(
a vT

v D

)
D ∈ R(n−1)×(n−1), v ∈ Rn−1, a ∈ R,

the inverse of M exists if D is invertible and a − vTD−1v ̸= 0, and in this case the

(1, 1)-entry of M−1 is given by

[M−1]11 =
1

a− vTD−1v
.

(a) Prove the formula above for the (1, 1)-entry of M−1.

Hint: it might be good to also find formulas for the other entries of M−1.

(b) By applying the formula above to M = Xn − zIn show that

[M−1]11 ≈
1

−z − Sn(z)
.

(c) By doing the same with splitting off the k-th row and column in M , show that the

Stieltjes transform of our Wigner matrix satisfies in the limit n→ ∞ the equation

S(z) =
1

−z − S(z)
.

(d) Solve the equation for S(z) and derive from this, by Stieltjes inversion formula, the

formula for the density of the semicircle.



Exercise 16 (4 + 4 points). Let Q ∈ Rp×p and U, V ∈ Rp×n be deterministic matrices

such that both Q and Q+ UV T are invertible.

(a) Show that In + V TQ−1U is also invertible.

(b) Show that (Q+ UV T )−1 = Q−1 −Q−1U(In + V TQ−1U)−1V TQ−1.



Exercise 17 (3 + 5 + 6 points). Let p, n ∈ N with p even and γ := p
n
. In Assignment

2, Exercise 1 we looked on Wishart matrices where Σ is not the identity matrix, but has

one half of its eigenvalues equal to t1 = 1 and the other half equal to t2 = 2. Let us now

consider such a situation with arbitrary t1, t2 ∈ R, i.e., our data matrix is of the form(
X
Y

)
∈ Rp×n,

where

• the columns of X ∈ R
p
2
×n are N(0, t1I p

2
)-distributed,

• the columns of Y ∈ R
p
2
×n are N(0, t2I p

2
) distributed, and

• all these column vectors are independent.

Thus the Wishart matrix is of the form

Σ̂ =
1

n

(
X
Y

)(
XT Y T

)
=

1

n

(
XXT XY T

Y XT Y Y T

)
∈ Rp×p.

(a) Recall that, apart from some zeros, Σ̂ has the same eigenvalues as

Σ̌ =
1

n

(
XT Y T

)(X
Y

)
=

1

n
(XTX + Y TY ) ∈ Rn×n.

Give, for p ≤ n, the relation between the Stieltjes transforms of Σ̂ and of Σ̌.

(b) By following the same ideas as in class for the determination of the Marchenko-

Pastur law, show that the limit Š(z) of the Stieltjes transform for this Σ̌ satisfies

1 + zŠ(z) =
γ

2

t1Š(z)

1 + t1Š(z)
+
γ

2

t2Š(z)

1 + t2Š(z)
.

(c) If we put S(z) := Š(z)/γ, then this satisfies the equation

S(z) = − 1

γz
+

1

2z

t1γS(z)

1 + t1γS(z)
+

1

2z

t2γS(z)

1 + t2γS(z)
.

This S(z) gives us then the density ψ of the asymptotic eigenvalue distribution of

Σ̂ via the Stieljes inversion formula

ψ(t) = lim
ε→0

1

π
Im
(
S(t+ iε)

)
.

Let t1 = 3, t2 = 15 and γ = 1
5
. In the same diagram, plot the following:



(i) The graph of ψ, obtained by numerically applying a fixed-point iteration to

calculate ψ(t) ≈ 1
π
Im
(
S(t + iε)

)
for ε = 0.01.7 As a starting point, any

point in the complex upper half-plane will work and result in a solution in the

complex upper half-plane. Use enough values for t to get a smooth curve!

(Note that there will be an additional pole at 0, coming from the difference

between Σ̂ and Σ̌.)

(ii) A histogram of the eigenvalues of a numerical simulation of the corresponding

Wishart matrix with p = 500, normalized to fit the density.

7Although the equation for S(z) is a cubic one and might thus be solved explicitly, it is easier to solve
the equation numerically as a fixed-point equation (especially in more general situations).



10.5. Assignment 5

Recall that the ReLU function is defined as ReLU(t) = max(0, t).

Exercise 18 (10 points). We now investigate a one-layer perceptron with random

features and n parameters: given an input x ∈ R, the neural network computes y =

wσ(ax+ b), where

• a ∼ N(0, In) is the weight and b ∼ N(0, In) is the bias,

• σ : R → R is the (non-linear) activation, applied component-wise,

• w ∈ R1×n is the linear regression of the training data.

Consider the following eleven (training) data points:8

xk −5 −4 −3 −2 −1 0 1 2 3 4 5
yk −3 −3 −4 1 −0.2 0.1 2 1.8 1.9 −0.2 2

For each n ∈ {5, 10, 11, 30, 300, 1000} and each σ ∈ {ReLU, sin} do the following:

(a) For two d-dimensional standard Gaussian vectors a, b ∼ N(0, In), compute the fea-

ture matrix

F =
(
f1 . . . f11

)
∈ Rn×11, where fk = σ(a · xk + b).

(b) Perform linear regression on the so-obtained features in order to fit the data given

above: w = Y F T (FF T )+, where Y =
(
y1 . . . y11

)
∈ R1×11 and A+ is the pseudo-

inverse of A.

(c) Plot the output of your neural network on the grid from −5 to 5 with step size 0.1.

For comparison, also plot the original data points. It suffices to hand in the plots,

no need to print out all the intermediate data.

Compare the plots and describe what you see. This is an instance of the so-called double-

descent!

8Copy-friendly version of the yk: [-3, -3, -4, 1, -0.2, 0.1, 2, 1.8, 1.9, -0.2, 2]



Exercise 19 (7 points). Consider the entries xij of our matrix X = (xij) ∈ Rp×n as

formal variables. For fixed z ∈ C, we put

R = R(z) =

(
1

n
XXT − zIp

)−1

∈ Rp×p.

Show that we have [
∂R

∂xij

]
kl

= − 1

n

(
Rki[X

TR]jl + [RX]kjRil

)
.

Exercise 20 ((3 + 4) + (2 + 3) points). For a function σ : R → R we denote

θ1(σ) :=
1√
2π

∫ ∞

−∞
σ(t)2 exp

(
−t

2

2

)
dt

and

θ2(σ) :=

(
1√
2π

∫ ∞

−∞
σ′(t) exp

(
−t

2

2

)
dt

)2

=

(
1√
2π

∫ ∞

−∞
tσ(t) exp

(
−t

2

2

)
dt

)2

.

(a) Let σ : R → R be such that θ1(σ) and θ2(σ) are finite.

(i) Show that θ2(σ) ≤ θ1(σ).

(ii) Show that θ2(σ) = θ1(σ) if and only if σ is a linear function, i.e., σ(t) = βt for

some β ∈ R.

(b) Let α ∈ R be a constant and consider the shifted ReLU function

σ(t) = ReLU(t)− α.

(i) Determine α such that

1√
2π

∫ ∞

−∞
σ(t) exp

(
−t

2

2

)
dt = 0.

(ii) Determine for this σ the quantities θ1(σ) and θ2(σ).



Exercise 21 ((4 + 4) + 3 points). Like in class, consider standard Gaussian random

matrices X ∈ Rp×n and W ∈ Rp×p together with a non-linearity σ : R → R. Let

F := σ

(
1
√
p
WX

)
∈ Rp×p and M :=

1

n
FF T ∈ Rp×p.

(a) Consider σ1(t) = t2 − 1 and σ2(t) = t3 − 3t. For each σ ∈ {σ1, σ2} do the following:

(i) Compute θ1(σ) and show that θ2(σ) = 0.

(ii) For p = 2000 and each γ ∈
{
1, 1

2
, 1
4

}
, draw a diagram including a histogram

of the eigenvalues of M and the corresponding Marchenko-Pastur distribution.

Re-scale σ such that the distribution matches the histogram.

(b) From class we know that in general, F behaves like

F̃ =

√
θ2√
p
WX +

√
θ1 − θ2Z

for (independent) standard Gaussian matrices W ∈ Rp×p and X,Z ∈ Rp×n. For

σ(t) = ReLU(t) − α from the previous exercise, compare a histogram of the eigen-

values ofM with a histogram of the eigenvalues of M̃ := 1
n
F̃ F̃ T . Again, use p = 2000

and consider each γ ∈
{
1, 1

2
, 1
4

}
.



10.6. Assignment 6

Exercise 22 (5 + 5 points).

(a) Let t be Poisson-distributed with rate λ > 0, i.e. t is a discrete random variable

supported on N0 with distribution

P(t = k) =
λk exp(−λ)

k!
.

Compute the cumulants of t using their definition as coefficients in the logarithm of

the characteristic function.

(b) Let t be χ2-distributed with k ∈ N degrees of freedom, i.e. t =
∑k

j=1 x
2
j , where the

xj ∼ N(0, 1) are independent. Compute the cumulants of t using Theorem 7.13.

Exercise 23 (2+4+4 points). Let {αn}n∈N and {κn}n∈N be two sequences that satisfy

the relation

αn =
∑

π∈P(n)

κπ,

where κπ = κr11 · . . . · κrnn and rj is the number of blocks of π of size j. We want to show

that, as formal power series,

log

(
1 +

∞∑
n=1

αn
zn

n!

)
=

∞∑
n=1

κn
zn

n!
. (6)

(a) Show that by differentiating both sides of (6) it suffices to prove

∞∑
n=0

αn+1
zn

n!
=

(
1 +

∞∑
n=1

αn
zn

n!

)
∞∑
n=0

κn+1
zn

n!
. (7)

(b) By grouping the terms in
∑

π∈P(n) κπ according to the size of the block containing

1, show that

αn =
∑

π∈P(n)

κπ =
n−1∑
m=0

(
n− 1

m

)
κm+1αn−m−1.

(c) Use the result of (b) to prove (7).



Exercise 24 (5 + 5 + 5 + 5 points). We consider, for p = 1, our 1 hidden layer neural

network of width m,

fm(x) = aTσ(bx+ c).

Initially, ã, b, c ∈ Rm are independent standard Gaussian random vectors and a := ã√
m

.

(Note that we include here also a bias c in the argument of σ). We want to use this to

learn the function g : R → R given by

g(x) =
√

|x|+ sin(10x),

restricted to the interval [−1, 1].

Choose randomly 15 data points xi, drawn from the uniform distribution on the interval

[−1, 1], and let yi := g(xi). From this data we try to recover g: Use gradient descent to

train the parameters {a, b} (we don’t train the bias c, but keep this fixed) with respect

to the loss function

L(a, b) = 1

2

15∑
i=1

(
yi − fm(xi)

)2
,

for varying widths m. It is actually advisable to use stochastic gradient descent ; that is,

in each step one uses only the gradient of
(
yi− fm(xi)

)2, with respect to a and to b, for a

randomly chosen i. Train until the loss function is less than 0.01 (in the case m > 15) or

until it does not decrease any more (in the case m ≤ 15). Plot then the trained function

fm(x) against the target function g(x) for 2000 points x sampled evenly from the interval

[−1, 1], for m ∈ {1, 2, 5, 10, 15, 30, 100, 500}. Show also the 15 data points (xi, g(xi)) in

this plot. As learning rate you might choose any η ∈ (0.001, 0.01).

(a) Do this for σ(x) = sin(8x).

(b) Do this for σ = ReLU.

(c) Check in those cases also what happens if you switch off the bias (i.e., put c = 0).

(d) Explain why it is a bad idea to switch off the bias in the case of σ(x) = sin(8x).

Explain why it is an even worse idea to do this in the case of σ = ReLU.
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